• Title/Summary/Keyword: braking control

Search Result 415, Processing Time 0.027 seconds

Maximum Braking Force Control Using Wheel Slip Controller and Optimal Target Slip Assignment Algorithm in Vehicles (휠 슬립 제어기 및 최적 슬립 결정 알고리즘을 이용한 차량의 최대 제동력 제어)

  • Hong Dae-Gun;Hwang In-Yong;SunWoo Myoung-Ho;Huh Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.295-301
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. In order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm. An adaptive law is formulated to estimate the longitudinal braking force in real-time. The wheel slip controller is designed using the Lyapunov stability theory and considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm is developed for the maximum braking force and searches the optimal target slip value based on the estimated braking force. The performance of the proposed wheel-slip control system is verified In simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

MAXIMUM BRAKING FORCE CONTROL UTILIZING THE ESTIMATED BRAKING FORCE

  • Hong, D.;Hwang, I.;SunWoo, M.;Huh, K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.211-217
    • /
    • 2007
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS (Anti-lock Brake System) systems. In realizing the wheel slip control systems, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance and stability enhancement. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm is proposed for maximizing the braking force. An adaptive law is formulated to estimate the braking force in real-time. The wheel slip controller is designed based on the Lyapunov stability theory considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm searches for the optimal target slip value based on the estimated braking force. The performance of the proposed wheel slip control system is verified in HILS (Hardware-In-the-Loop Simulator) experiments and demonstrates the effectiveness of the wheel slip control in various road conditions.

Design and Control of Braking Chopper Circuit for Ventilation Inverter of Traction Control System (고속전철용 추진제어장치의 냉각용 인버터를 위한 제동초퍼 회로 설계 및 제어)

  • Cho, Sung-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.314-315
    • /
    • 2011
  • This paper introduces the design and control method of braking chopper circuit which can supply input power to ventilation inverter of traction control system. The DC input voltage from auxiliary block (static inverter) is normally used as an input of ventilation inverter. It converts DC input to AC output voltage to drive cooling fans for traction control system and traction motors. The electrical braking force is very important for high speed train to guarantee safety even though the train is running in the dead section where the pantograph voltage is not supplied. When the high speed train decelerate speed in dead section, the regenerative energy is dissipated by braking resistor. This paper proposed the braking chopper control method to implement rheostatic braking function and the appropriate chopper circuit for supplying voltage source to ventilation inverter during rheostatic braking mode. The proposed chopper circuit makes it possible for traction control system to regenerate power continuously regardless of the existence of pantograph voltage. The feasibility of proposed braking chopper control and circuit were proven by inertia load test and actual train field test.

  • PDF

Development of Regenerative Braking Control Algorithm for a 4WD Hybrid Electric Vehicle (4WD HEV의 회생제동 제어로직 개발)

  • Yeo Hoon;Kim Donghyun;Kim Talchol;Kim Chulsoo;Hwang Sungho;Kim Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.38-47
    • /
    • 2005
  • In this paper, a regenerative braking algorithm is proposed to make the maximum use of the regenerative braking energy for an independent front and rear motor drive parallel HEV. In the regenerative braking algorithm, the regenerative torque is determined by considering the motor capacity, motor efficiency, battery SOC, gear ratio, clutch state, engine speed and vehicle velocity. To implement the regenerative braking algorithm, HEV powertrain models including the internal combustion engine, electric motor, battery, manual transmission and the regenerative braking system are developed using MATLAB, and the regenerative braking performance is investigated by the simulator. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC, which recuperates 60 percent of the total braking energy while satisfying the design specification of the control logic. In addition, a control algorithm which limits the regenerative braking is suggested by considering the battery power capacity and dynamic response characteristics of the hydraulic control module.

Vehicle Stability Control for a 4WD HEV using Regenerative Braking and Electronic Brake force Distribution (회생제동과 EBD를 이용한 4WD HEV의 차량 안정성 제어)

  • Kim Donghyun;Kim Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.166-173
    • /
    • 2005
  • A vehicle stability control logic for 4WD hybrid electric vehicle is proposed using the regenerative braking of the rear motor and electronic brake force distribution module. Performance of the stability control logic is evaluated for J-turn and single lane change. It is found from the simulation results that the regenerative braking at rear motor is able to provide improved stability compared with the vehicle performance without my stability control. Additional improvement can be achieved by applying the regenerative braking plus electronic brake farce distribution control. It is expected that the regenerative braking offers additional improvement of the fuel economy as well as the vehicle stability control.

A study on Characteristics of Disc Brake of & Technology of Brake Control System in High Speed Railway (고속차량용 디스크 제동 특성 및 제동제어 방법기술에 대한 연구)

  • Shin Y.J;Choi K.J.;Gwak J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.393-397
    • /
    • 2005
  • Since the braking system of rolling stock is directly linked to it's safety, ensuring reliability of braking system and evaluation of performance of it are very important. To develope the performance of braking system, it is required advanced technology and gradually various factors in the field test result. This study is designed to analyze the air pressure control about braking force in rolling stock, also, by comparing braking force of high speed railway with that of high speed train. This paper suggests to establish a method of computation of braking force form the air pressure control. And The high speed train researches into patterns of braking system such as the train of speed up and introduction of electric and pneumatic braking system.

  • PDF

A Study on the Braking Characteristics of Control Methods for ABS mounted Vehicle (ABS 장착 자동차의 제어방식에 따른 제동특성에 관한 연구)

  • Choi, Jong-Hwan;Kim, Wung-Su;Yang, Soon-Yong;Park, Sung-Tae;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.203-211
    • /
    • 2002
  • ABS (Anti-lock Braking System) is a safety device for preventing wheel locking in a sudden braking. It consists of hydraulic modulator, ECU(Electronic Control Unit) and angular velocity sensors. Its control methods are classified into three types; deceleration control, slip ratio control and deceleration/acceleration control. In this paper, ABS mounted vehicle is mathematically modeled and the proposed model is verified by actual cars experiments, and the braking characteristics of the control methods with pulse width modulation are compared and analyzed through computer simulations.

Development of a Wheel Slip Control System for Vehicle Cornering Stability (차량 선회 안정성을 위한 휠 슬립 제어시스템 개발)

  • Hong, Dae-Gun;Huh, Kun-Soo;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.174-180
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional braking control systems. In order to achieve the superior braking performance through the wheel slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a wheel slip control system is developed for maintaining the vehicle stability based on the braking monitor, wheel slip controller and optimal target slip assignment algorithm. The braking monitor estimates the tire braking force, lateral tire force and brake disk-pad friction coefficient utilizing the extended Kalman filter. The wheel slip controller is designed based on the sliding mode control method. The target slip assignment algorithm is proposed to maintain the vehicle stability based on the direct yaw moment controller and fuzzy logic. The performance of the proposed wheel slip control system is verified in simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

A study on Test and Evaluation & Technology of Brake Control System in High Speed Railway (고속철도 제동제어 시험평가기술 방법에 대한 연구)

  • Shin Yu-Jeong;Choi Kyung-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.103-108
    • /
    • 2005
  • Since the braking system of rolling stock is directly linked to it's safety, ensuring reliability of braking system and evaluation of performance of it are very important. To develope the performance of braking system, it is required advanced technology and gradually various factors in the field test result. This study is designed to analyze the air pressure control about braking force in rolling stock, also, by comparing braking force of KTX with that of high speed train. This paper suggests to establish a method of computation of braking force form the air pressure control. And The high speed train researches into patterns of braking system such as the train of speed up and introduction of electric and pneumatic braking system.

  • PDF

Braking Torque Closed-Loop Control of Switched Reluctance Machines for Electric Vehicles

  • Cheng, He;Chen, Hao;Yang, Zhou;Huang, Weilong
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.469-478
    • /
    • 2015
  • In order to promote the application of switched reluctance machines (SRM) in electric vehicles (EVs), the braking torque closed-loop control of a SRM is proposed. A hysteresis current regulator with the soft chopping mode is employed to reduce the switching frequency and switching loss. A torque estimator is designed to estimate the braking torque online and to achieve braking torque feedback. A feed-forward plus saturation compensation torque regulator is designed to decrease the dynamic response time and to improve the steady-state accuracy of the braking torque. The turn-on and turn-off angles are optimized by a genetic algorithm (GA) to reduce the braking torque ripple and to improve the braking energy feedback efficiency. Finally, a simulation model and an experimental platform are built. The simulation and experimental results demonstrate the correctness of the proposed control strategy.