• Title/Summary/Keyword: brake cylinder

Search Result 108, Processing Time 0.026 seconds

A cycle simulation of the S.I. engine and it's verification test (S.I. 엔진의 사이클 시뮬레이션 및 이의 확인 실험)

  • 목희수;김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.72-84
    • /
    • 1988
  • Engine performance is one of the main objectives specified at the beginning of a new engine design project. The cycle simulation for SI engine is based on the zero-dimensional gas exchange model and a heat release expression by Viebe. This program also requires minimum input data and takes only a short time to run. Heat transfer from cylinder transfer formula. The flow coefficient (effective area) is calculated from valve lift using the standard flow coefficient curve and engine friction is calculated from the Millington and Hartles' engine friction formula. The chemical species considered in burned gas are 6 species CO, CO, H$_{2}$, H$_{2}$O, $O_{2}$, N$_{2}$ and the cylinder pressure, homogeneous cylinder temperature, gas composition and burned fraction are calculated at each crank angle through the cycle. To check the validity and accuracy, experimental study was done with 3 engines for measuring cylinder pressure, indicated mean effective pressure, brake mean effective pressure and air flow rate, etc. Despite its simple assumptions, cycle simulation showes excellent breathing and performance correlation when compared with data of tested engines, and have been proved useful in engine design.

  • PDF

An Experimental Study on The Friction Coefficient of Rubbers for Clutch Master Cylinder Cup-Seals (클러치 마스터실린더 컵-시일 고무의 마찰계수 실험 연구)

  • 이재천;임문혁;이병수;장지현;정용승;허만대;최병기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.112-118
    • /
    • 2003
  • The friction coefficients of the rubber for clutch master cylinder were experimentally measured in this study. The cylindrical rubber samples for primary cup-seal and secondary cup-seal were tested against the aluminum or the steel plates of master cylinder housing under the various conditions of brake oil temperatures and normal loads. Dry sliding friction coefficients were also measured under various load conditions. The test revealed following results. First, the friction coefficient under fluid lubrication condition in general decreases, as the oil temperature or normal load increases. Second, the steel plate of low surface roughness yielded comparatively low friction coefficient on the range of 0.30∼0.67. On the other hand, the aluminum plate of high surface roughness yielded high friction coefficient on the range of 0.31∼1.15. Third, the friction coefficient of dry surface contact decreases as the normal load increases. This is contrary to the general principle of friction coefficient between metal plates.

Vehicle Longitudinal Brake Control with Wheel Slip and Antilock Control (바퀴 슬립과 잠김 방지 제어를 고려한 차량의 종렬 브레이크 제어)

  • Liang Hong;Choi Yong-Ho;Chong Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.502-509
    • /
    • 2005
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. The simulation results indicate that the velocity and spacing errors were slightly larger than those obtained when the wheel slip effect was not considered, that the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and that the limit for the antilock control under non-constant adhesion road conditions was determined by the minimum value of the equivalent adhesion coefficient.

Effect of Air-fuel Ratio on Combustion and Emission Characteristics in a Spark Ignition Engine Fueled with Bio-ethanol (공연비 변화가 바이오에탄올 연료 스파크 점화기관의 연소 및 배출물 특성에 미치는 영향)

  • Kim, Dae-Sung;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this paper is to investigate the effect of air-fuel ratio on the combustion and emissions characteristics of spark ignition (SI) gasoline engine fueled with bio-ethanol. A 1.6L SI engine with 4 cylinders was tested on EC dynamometer. In addition, lambda sensor and lambda meter were connected with universal ECU to control the lambda value which is varied from 0.7 to 1.3. The engine performance and combustion characteristics of bio-ethanol fuel were compared to those obtained by pure gasoline. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen ($NO_X$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque and cylinder pressure of bio-ethanol fuel were slightly higher than those of gasoline fuel. Brake specific fuel consumption (BSFC) of bio-ethanol was increased while brake specific energy consumption (BSEC) was decreased. The exhaust emissions of bio-ethanol fuel were lower than those of gasoline fuel under overall experimental conditions. However, the specific emission characteristics of the engine with bio-ethanol fuel were influenced by air-fuel ratio.

Experimental Study on the Axial Crushing Behavior of Truncated Cone Type Brake Device (콘 형상 제동장치의 축방향 압축변형에 대한 실험적 연구)

  • Kim, Ji-Chul;Lee, Hak-Yeol;Kim, Il-Soo;Shim, Woo-Jeon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.169-176
    • /
    • 2002
  • Axial crushing behavior of cylindrical shell Is utilized in the braking of the high-velocity impacting object. In this paper, truncated cone shape brake device is introduced. That is, thickness of the shell is increased gradually from the impacting end to the other end. A detailed experimental investigation on the quasi-static axial crushing behavior of truncated cone type brake devices has been performed. Specimens of various shape were tested to check the influence of design parameters such as length, radius, mean thickness, and conical angle of cylinder. Influence of the material properties were also investigated by adopting aluminum, low carbon steel, and stainless steel as constructing materials. By analyzing deformation procedures of the specimens, it is seen that conical angle influence the deformation mode and the sequence of the wrinkles generation. Braking distance and mean braking force of each specimen were predicted based on the crushing load measured from the tests.

  • PDF

Engine Performance and Emissions Characteristics in an LPG Engine Converted with Mixer and LPi System Fuel Supply Methods (개조된 LPG엔진에서 Mixer와 LPi 연료공급방식의 엔진성능 및 배기특성)

  • Choi, Gyeung-Ho;Kim, Jin-Ho;Cho, Ung-Lae;Han, Sung-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1075-1080
    • /
    • 2004
  • In this study, performance and emissions characteristics of an liquefied petroleum gas (LPG) engine converted from a diesel engine were examined by using mixer system and liquid propane injection (LPi) system fuel supply methods. A compression ratio for the base diesel engine, 21, was modified into 8, 8.5, 9 and 9.5. The cylinder head and the piston crown were modified to roe the LPG in the engine. Ignition timing was controlled to be at minimum spark advance for best torque (MBT) each case. Engine performance and emissions characteristics are analyzed by investigating engine power, brake mean effective pressure (BMEP), brake specific fuel consumption (BSFC), volumetric efficiency, CO, THC and NOx. Experimental results showed that the LPi system generates higher power and lower emissions than the conventional mixer fuel supply method.

Variable Parameter Sliding Controller Design for Vehicle Brake with Wheel Slip

  • Liang, Hong;Chong, Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1801-1812
    • /
    • 2006
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, pushrod force as the end control parameter, and an antilock sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. Simulation results indicate that the velocity and spacing errors were slightly larger than the results that without considering wheel slip effect, the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and the limit for the antilock control on non-constant adhesion road condition was determined by the minimum of the equivalent adhesion coefficient.

A Study of Frictional Contact Vibration Influence on Hot Spot in Automotive Disk Brake (디스크 브레이크에서 접촉 마찰 진동이 열섬에 미치는 영향 연구)

  • Cho, Ho-Joon;Kim, Myoung-Gu;Cho, Chong-Du
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.154-161
    • /
    • 2007
  • Hot spot phenomenon that occurs, during judder vibration, is locally concentrated heat due to friction between brake disk and pad. It is important to understand the reason behind hot spot phenomenon, for reduction of judder vibration. In this experimental study, experiments were performed in accordance with rotation speed of brake disk, pressure of master cylinder and pad length for achieving different aspects of hot spot phenomenon. Temperature distribution of hot spot was obtained by using the infrared camera. As the hot spot occurred, vibration was measured and frequency analysis was performed. Finite element analysis of thermal deformation of disk was performed by using temperature distribution that was achieved by experimental results. And mode shapes of disk was analyzed by finite element analysis and compared with experimental results. It was observed that the excitation frequency band of frictional contact and frictional force mainly affects the hot spot phenomenon.

The performance and emissions of methanol-LPG fueled spark ignition engine (Methanol-LPG연료 전기점화기관의 성능 및 배출물농도)

  • 김응서;조경국
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.2
    • /
    • pp.64-79
    • /
    • 1985
  • Engine performances and emission characteristics were investigated, using a experimental single cylinder engine with methanol-LPG(butane) fuel blend. The results were compared with the case of neat methanol and gasoline. The blending ratio of methanol to LPG was reasonable at 90 : 10(M90) and in using M90, the engine performances including output, brake specific fuel consumption and brake thermal efficiency, were better than those of neat methanol and gasoline. CO emission of M90 was lower than that of meat methanol by 15% and lower than that of gasoline by 35%. HC emission of M90 was also lower than that of gasoline by 46-85% in the whole range of .phi. The concentration of NOx emission of M90 was lower than that of gasoline and higher than that of neat methanol.

  • PDF

A Study on the Dynamic Characteristics of ABS Hydraulic Control Valve (ABS 유압 제어 밸브의 동 특성 해석에 관한 연구)

  • 김병우;송창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.121-130
    • /
    • 2001
  • For the purpose of optimal control of anti-lock brake systems, precise dynamic characteristics analysis of hydraulic modulator, especially solenoid valve is necessary. However, most of researches so far have dealt with dynamic characteristic analysis of valve itself, and the results have been restrictively applied to the actual ABS modulator, where hydraulic pressure is acting. In this study, mathmatical modeling and experimental analysis were peformed in order to evaluate the valve dynamic characteristics when the hydraulic pressure is applied. High pressure on the master cylinder that affects on the valve dynamic characteristics have been analyzed quantitatively, and performance improvement methods have been suggested through parameter study. Consequently, results of solenoid valve dynamic characteristics analysis derived in the study can be utilized as criteria for the optimal control of anti-lock brake systems.

  • PDF