Stroke is the second most significant disease leading to death in Korea. The conventional therapeutic approach is mainly based on physical training, however, it usually provides the limited degree of recovery of the normal brain function. The electric stimulation therapy is a novel and candidate approach with high potential for stroke recovery. The feasibility was validated by preliminary rat experiments in which the motor function was recovered up to 80% of the normal performance level. It is thought to improve the neural plasticity of the nerve tissues around the diseased area in the stroked brain. However, there are not so much research achievements in the electric stimulation for stroke recovery as for the Parkinson's disease or Epilepsy. This study aims at the developments of a wireless variable pulse generator using ZigBee communication for future implantation into human brain. ZigBee is widely used in wireless personal area network (WPAN) and home network applications due to its low power consumption and simplicity. The developed wireless pulse generator controlled by ZigBee can generate various electric stimulations without any distortion. The electric stimulation includes monophasic and biphasic pulse with the variation of shape parameters, which can affect the level of recovery. The developed system can be used for the telerehabilitation of stroke patient by remote control of brain stimulation via ZigBee and internet. Furthermore, the ZigBee connection used in this study provides the potential neural signal transmission method for the Brain-Machine Interface (BMI).
최근, 동작 상상(Motor Imagery) Electroencephalogram(EEG)를 기반으로 한 Brain-Computer Interface(BCI) 시스템은 의학, 공학 등 다양한 분야에서 많은 관심을 받고 있다. Common Spatial Pattern(CSP) 알고리즘은 동작 상상 EEG의 특징을 추출하기 위한 가장 유용한 방법이다. 그러나 CSP 알고리즘은 공분산 행렬에 의존하기 때문에 Small-Sample Setting(SSS) 상황에서 성능에 한계가 있다. 또한 사용하는 주파수 대역에 따라 큰 성능 차이를 보인다. 이러한 문제를 동시에 해결하기 위해, 4-40Hz 대역 EEG 신호를 9개의 필터 뱅크를 이용하여 분할하고 각 밴드에 Regularized CSP(R-CSP)를 적용한다. 이후 Mutual Information-Based Individual Feature(MIBIF) 알고리즘은 R-CSP의 차별적인 특징을 선택하기 위해 사용된다. 본 연구에서는 대뇌 피질의 운동영역 부근 18개 채널을 사용하여 BCI CompetitionIII DatasetIVa의 피험자 다섯 명(aa, al, av, aw 및 ay)에 대해 각각 87.5%, 100%, 63.78%, 82.14% 및 86.11%의 정확도를 도출하였다. 제안된 방법은 CSP, R-CSP 및 FBCSP 방법보다 16.21%, 10.77% 및 3.32%의 평균 분류 정확도 향상이 있었다. 특히, 본 논문에서 제안한 방법은 SSS 상황에서 우수한 성능을 보였다.
목적 자기공명 스펙트럼 데이터의 처리 및 분석을 특정 workstation이 아닌 일반 PC의 windows 운영체제에서 동작할 수 있도록 GUI(Graphical User Interface)기반의 Spectroscopy 분석용 도구를 개발하였다. 대상 및 방법 S/W의 개발은 MATLAB(Mathwork사 미국)을 이용하여 PC의 window운영 체제에서 GUI 기반으로 동작하게 하였다. 시간 영역의 raw data와 주파수 영역의 spectrum data를 동시에 display할 수 있게 하였으며 Zero filling, 여러 종류의 filtering, 위상보정, FFT, peak area 측정 등의 기능을 갖추었다. 또한, 1.5T Gyroscan ACS-NT R6(Philips, Amsterdam, Netherland)의 $^1H$ Spectroscopy 패키지를 이용하여 정상인 뇌의 Parietal white matter, Basal ganglia, Occipital grey matter 영역에서 얻은 $^1$H MRS data를 정성 .정량적으로 분석하여 타 기종에서 얻어 발표된 $^1H$ MRS data와 비교분석하였다. 결과 : 본 연구에서 개발된 S/W를 이용하여 정상인 뇌에서 $^1H$ MRS data를 processing한 결과 NAA/Cr, Cho/Cr, MI/Cr 비율은 TE를 달리하였을 때, 유의수준 5%에서 Parietal white matter(PWM)의 NAA/Cr peak ratio를 제외하고 유의한 차이가 없었다. 그리고 기존에 발표된 문헌과 비교할 때 다른 MR장치의 NAA/Cr, Cho/Cr, MI/Cr 값들에 비해 평균값과 표준편차가 전반적으로 10-50%의 큰 값을 나타내었다. 결론 : 정상인 뇌에서 세 부위에 대하여 $^1H$ MRS를 얻고 이에 대한 정성.정량 분석을 함으로써 MRS를 임상적으로 적용하기 위한 준비를 하였으며 이러한 작업을 PC에서 독립적으로 수행함으로서 MRI system의 작업효율을 향상시킬 수 있었다. 그리고 서로 다른 기종간에는 유의한 차이가 있으므로 정상인에 대한 MRS database를 구축한 후에 $^1H$ MRS를 임상에 적용해야 함을 알 수 있었다.
Kim, Ju-Hwan;Park, Je-Won;Han, Dong-Jun;Park, Dong-Wook
Journal of Semiconductor Engineering
/
제1권3호
/
pp.88-98
/
2020
As biosensors are widely used in the medical field, flexible devices compatible with live animals have aroused great interest. Especially, significant research has been carried out to develop implantable or skin-attachable devices for real-time bio-signal sensing. From the device point of view, various biosensor types such as field-effect transistors (FETs) and multi-electrode arrays (MEAs) have been reported as diverse sensing strategies. In particular, the flexible FETs and MEAs allow semiconductor engineering to expand its application, which had been impossible with stiff devices and materials. This review summarizes the state-of-the-art research on flexible FET and MEA biosensors focusing on their materials, structures, sensing targets, and methods.
이 연구는 비동기 매커니즘을 바탕으로 닫힌 눈(eye-closed) 및 이중 블링크 (double-blinking) EEG를 사용하여 BCI를 개발하는 것을 목표한다. 제안된 시스템은 신호 처리 모듈과 그래픽 사용자 인터페이스 (VK-가상 키보드)로 구성되어 있으며 26개의 영문자와 특수 기호로 구성됩니다. "눈 닫기"이벤트는 "선택"(select)명령을 유발하는 반면, "이중 블링크"(DB) 이벤트는 "실행 취소"(undo) 명령에 따라 실행합니다. 3개의 이벤트 그룹 ("열린 눈"(eye-open, "닫힌 눈" (eye-closed)및 "이중 블링크"(double-blinking)에 대한 EEG 신호 분석과 관련된 3 등급 벡터 보조 분류 (SVM) 기계가 제안되었습니다. 결과는 제안된 BCI가 평균 92.6 %의 전체 정확도와 5 글자 / 분의 맞춤법 비율을 달성 할 수 있음을 보여주었습니다. 전반적으로 이 연구는 실제 BCI 맞춤법을 구현하기의 실현 가능성과 신뢰성으로 인해 정확도와 철자 비율의 향상을 보여주었습니다.
지금까지 뇌파(Electroencephalography - EEG)는 뇌전증 진단 및 치료를 위한 가장 중요하고 편리한 방법이었다. 그러나 뇌전증 뇌파 신호의 파형 특성은 매우 약하고 비 정지 상태이며 배경 노이즈가 강하기 때문에 식별하기가 어렵다. 이 논문에서는 간질 뇌파의 특징 선택을 통한 차원 감소를 통한 분류 방법의 효과를 분석한다. 우리는 차원 감소를 위해 주 요소 분석, 커널 요소 분석, 선형 판별 분석 방법을 사용하였다. 차원 감소방법의 성능 분석을 위해 Support Vector Machine: SVM), Logistic Regression(: LR), K-Nearestneighbor(: K-NN), Decision Tree(: DR), Random Forest(: RF) 분류 방법들을 사용해 평가하였다. 실험 결과에 따르면, PCA는 SVM, LR 및 K-NN에서 75% 정확도를 나타냈다. KPCA는 SVM과 K-KNN에서 85%의 성능을 보였으며 LDA는 K-NN를 이용했을 때 100 %의 정확도 보여주었다. 따라서 LDA를 이용한 차원 감소가 뇌전증 EEG 신호에 대한 최고의 분류 결과 보여주었다.
Objective: The aim of this study was to develop the assistive device for accelerator and brake pedals using bio-signals from the prefrontal lobe in the driving simulator and evaluate its performance. Background: There is lack of assistive devices for the driving in peoples with disabilities in Korea. However, if bio-signals and/or brain waves are used at driving a car, the people with serious physical limitations can improve their community mobility. Method: 15 subjects with driver's license participated in this study for experiment of driving performance evaluation in the simulator. Each subject drove the simulator the same course 10 times in three separated groups which use different interface controllers to accelerate and brake: (1) conventional pedal group, (2) joystick group and (3) bio-signal group(horizontal quick glance of the eyes and clench teeth). All experiments were recorded and the driving performances were evaluated by three inspectors. Results: Average score of bio-signal group for the driving in the simulator was increased 3% compared with the pedal group and was increased 9% compared with the joystick group(p<0.01). The subjects using bio-signals was decreased 44% in number of deduction compared with others because the device had the built-in modified cruise control. Conclusion: The assistive device for accelerator and brake pedals using bio-signals showed significantly better performance than using general pedal and a joystick interface(p<0.01). Application: This study can be used to design adaptive vehicle for driving in people with disabilities.
뇌전도 기반의 뇌-컴퓨터 인터페이스는 향후 손 또는 발과 같은 신체를 대체하거나 사용자의 편의성을 제고하는 등의 다양한 목적으로 여러 산업에서 사용이 될 수 있는 기술이다. 본 논문에서는 경험 모드 분해와 고속푸리에 변환을 통해 동작 상상 뇌전도 신호를 분해하고 특징을 추출하는 방법을 제안한다. 뇌전도 신호 분류 과정은 다음과 같이 3단계로 구성된다. 신호 분해에서는 경험모드분해를 이용하여 뇌전도 신호에 대한 내재모드함수를 생성한다. 특징 추출에서는 파워 스펙트럼 밀도를 이용하여 생성된 내재모드함수의 주파수 대역을 확인한 뒤, 뮤파 대역을 포함하고 있는 내재모드함수에 고속푸리에 변환을 적용하여 움직임 상상에 대한 특징을 추출한다. 특징 분류에서는 서포트 벡터 머신을 사용하여 동작 상상 뇌전도 신호에 대한 특징을 분류하고, 10-교차검증을 통해 분류기의 일반화 성능을 추정한다. 제안하는 방법은 다른 방법들과 비교하여 84.50%의 분류 정확도를 보여주었다.
본 논문은 XR 콘텐츠나 인터페이스 환경에서 활용할 수 있는 음향 자극의 종류를 고찰하고, 청각 자극 기반의 감성 유발이 뇌과학적으로 실효성을 가지는지에 대해 논의하였다. 외부 청각자극, 감성변화 및 뇌연결성의 상관관계 규명에 초점을 맞추어, XR 환경에서 사용자 경험을 제고하기 위한 기계학습 기반 개인 맞춤형 사운드 트랙 제공 서비스 개발이 필요하다는 시사점을 도출하였다. 또한, 짧은 음향자극으로 감성을 유발할 수 있는지를 테스트하여 청각자극에 의해 유발된 각성상태에서 우측 전두엽이나 전두엽, 두정엽, 후두엽 네트워크에서 뇌의 기능적 연결성이 강화되고 이완시에는 상반된 패턴을 보이는 것을 확인하였다. 본 연구에서 도출된 결과는 보다 입체적인 XR 상호작용 경험을 제시하고 사용자의 XR 인지수용성을 제고하여, 현장에서 실질적으로 적용될 수 있는 초실감 XR 사운드 바이오피드백 시스템 개발에 활용될 수 있을 것이다.
본 연구에서는 웨이블릿 평면에서 대역 분할된 데이터를 특징 벡터로 하는 SVM을 이용한 ERP 검출 실험을 하였다. 뇌파 신호는 SCSD의 SCCN 뇌파 데이터베이스에 있는 시각적 자극(visual stimulus)을 이용하여 발생한 ERP를 사용하였다. 검출 알고리즘을 이용한 실험은 기존의 뇌파의 주파수 분석 데이터를 특징 벡터로 하는 방법과 웨이블릿 평면에서 전개된 뇌파 데이터를 특징 벡터로 하는 SVM 검출 방식을 비교하였다. 실험 결과는 기존의 특징 벡터를 이용하는 방법에 비하여 웨이블릿 평면에서 전개된 특징 벡터를 이용하는 SVM 방식이 EPR의 검출 율에서 약 10%의 향상된 성능을 나타내었다. 실험 결과에 대한 분석에서 웨이블릿 평면 특징 벡터를 적용한 SVM 실험 결과에서 검출율이 향상된 이유로서 대뇌 피질 활동이 ERP의 주파수 대역에 따른 활동성의 증감 특성과 ERP의 웨이블릿 평면 대역별 특성에 대한 비교 분석을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.