• Title/Summary/Keyword: brain signal

Search Result 643, Processing Time 0.035 seconds

New Protein Extraction/Solubilization Protocol for Gel-based Proteomics of Rat (Female) Whole Brain and Brain Regions

  • Hirano, Misato;Rakwal, Randeep;Shibato, Junko;Agrawal, Ganesh Kumar;Jwa, Nam-Soo;Iwahashi, Hitoshi;Masuo, Yoshinori
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.119-125
    • /
    • 2006
  • The rat is an accepted model for studying human psychiatric/neurological disorders. We provide a protocol for total soluble protein extraction using trichloroacetic acid/acetone (TCA/A) from rat (female) whole brain, 10 brain regions and the pituitary gland, and show that two-dimensional gel electrophoresis (2-DGE) using precast immobilized pH (4-7) gradient (IPG) strip gels (13 cm) in the first dimension yields clean silver nitrate stained protein profiles. Though TCA/A precipitation may not be "ideal", the important choice here is the selection of an appropriate lysis buffer (LB) for solubilizing precipitated proteins. Our results reveal enrichment of protein spots by use of individual brain regions rather than whole brain, as well as the presence of differentially expressed spots in their proteomes. Thus individual brain regions provide improved protein coverage and are better suited for differential protein detection. Moreover, using a phosphoprotein-specific dye, ingel detection of phosphoproteins was demonstrated. Representative high-resolution silver nitrate stained proteome profiles of rat whole brain total soluble protein are presented. Shortcomings apart (failure to separate membrane proteins), gel-based proteomics remains a viable option, and 2-DGE is the method of choice for generating high-resolution proteome maps of rat brain and brain regions.

Noninvasive Brain Stimulation Using a Modulated Microwave Signal

  • Seo, Taeyoon;Oh, Seongwoog;Jung, Dahee;Huh, Yeowool;Cho, Jeiwon;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.70-72
    • /
    • 2018
  • We propose a microwave signal generation system for brain stimulation. The existing brain stimulation system uses a signal of several tens of kHz, and the magnetic field distribution is wide. Microwave is used to locally limit the distribution of the electromagnetic field and to change the action potential of the cell with less power. The switch modulates the microwave signal to obtain a pulse envelope. The action potential of the cell can be controlled to the excitation/inhibition state by adjusting the repetition frequency. These results are confirmed by measuring the cell potential of the mouse brain.

EEG Based Brain-Computer Interface System Using Time-multiplexing and Bio-Feedback (Time-multiplexing과 바이오 피드백을 이용한 EEG기반 뇌-컴퓨터 인터페이스 시스템)

  • Bae, Il-Han;Ban, Sang-Woo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.236-243
    • /
    • 2004
  • In this paper, we proposed a brain-computer interface system using EEG signals. It can generate 4 direction command signal from EEG signals captured during imagination of subjects. Bandpass filter used for preprocessing to detect the brain signal, and the power spectrum at a specific frequency domain of the EEG signals for concentration status and non-concentration one is used for feature. In order to generate an adequate signal for controlling the 4 direction movement, we propose a new interface system implemented by using a support vector machine and a time-multiplexing method. Moreover, bio-feed back process and on-line adaptive pattern recognition mechanism are also considered in the proposed system. Computer experimental results show that the proposed method is effective to recognize the non-stational brain wave signal.

Diffusion-Weighted MR Imaging of Various Intracranial Diseases : Clinical Utility (다양한 두개강내 질환의 확산강조 자기공명영상 : 임상적 유용성)

  • 김영준
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.104-112
    • /
    • 1998
  • Purpose : To evaluate the clinical utility of diffusion-weighted imaging by analyzing the signal intersity of lesions in patients with various intracranial diseases. Materials and Methods : difusion-weighted MR imaging was prospectively perormed in randomly selected 70 patients with various intracranial idseases. They consisted of 20 patients with acute infarct, 21 patients with chronic infarct of small vessel disease, 14 patients with primary intracranial tumor, three patients with brain metastasis, five patient with brain abscess, five patients with brain abscess, five patients with cerebral hemorrhage, one patient with neurocysticercosis, and one patient with epidermoid cyst. the diffusion-weighted images were obtained immediately after routine T2-weighted imaging on a 1.5T MR unit using single shot spin echo EPI technique with 6500 ms TR, 107ms TE, $128{\times}128$ matrix, 1 number of excitation, $24{\times}24$ field of view, 5-7 mm slice thickness, 2-3 mm inter-slice gap. The diffusion-gradients (b value of ($1000s{\;}/{\;}textrm{mm}^2$)) were applied along three directions(x, y, z). On visual inspection of diffusion-weighted images, the signal intersity of lesions was arbitrarily graded as one of 5 grades. In quantitative assessment, we measured the signal intensity of all the lesions and the contralateral corresponding normal area using round region of interest(ROI), and then calculated the signal intensity ratio of the lesion to the normal brain parenchyma. Results : On visual inspection, markedly hyperintense signals were seen in all cases of acute infarct, brain abscess, epidermoid cyst, and neurocysticercosis in degenerating stage. In all cases of cerebral hematoma, the very high signal internsity was intermingled with low signal intensity. focal very high signal intersity was also seen in a solid portion of the tumor in a patient. the mean signal intensity ratios of all those lesions to the normal brain parenchyma were above 2.5. Gliosis, solid component of brain tumor, brain metastasis, and vasogenic dedma appeared isointense to the normal brain parenchyma in 71%, 64%, 100%, and 67%, respectively ; the mean signal intensity ratios of those lesions to the normal brain parenchyma ranged 1.15 to 1.28 and there was no significant difference among these(p>0.1). Cystic cerebromalacia and necrotic or cystic portions in tumor were markedly or slightly hypointense, and the mean signal intensity ratios were 0.45 and 0.42, respectively. Conclusion : Very high signal intensity of acute infarct, brain abscess, epidermoid cyst, and cystic neurocysticercosis in degenerating stage on diffusion-weighted images may be helpful in differentiating from other diseases that are hypointense or isointense to the normal brain parenchyma. It may be especially useful differentiation of brain abscess from brain tumor with necrotic or cystic portion.

  • PDF

Real-time brain mapping system using EEG and evoke potential (뇌파 및 Evoke potential을 이용한 실시간 Brain mapping system)

  • Cho, Sang-Heum;Kim, Pan-Ki;Park, Sue-Kyoung;Kim, Ji-Eun;Song, Eun;Kang, Mahn-Hee;Ahn, Chang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1983-1984
    • /
    • 2008
  • 뇌 활동의 전기적 신호인 뇌파(EEG)와 외부 자극에 대한 유발 전위(EP)를 측정하여 실시간으로 뇌지형도를 생성하는 real-time brain mapping system을 개발하였다. 측정 전극은 32채널을 사용하였고, EEG를 실시간 및 누적 주파수 분석을 통한 뇌파의 활성도 진단, EP를 측정하여 시각적/청각적 자극에 의한 유발 전위 분석을 할 수 있다. 본 시스템은 측정 대상군의 통계적 분석을 위한 Database를 구축하였고, 신뢰성 높은 뇌파 및 유발 전위 신호를 위하여 실시간 측정과정 및 측정 후 Data 검토과정에서 다양한 Artifact 제거 알고리즘이 도입되었다. 또한, 32 채널 Brain map을 구성하여 뇌파를 공간적으로 분석 가능하며, 시간 및 주파수의 증가에 따라 Brain map을 동영상화하여 시간적/주파수적 변화에 따른 분석이 가능하다.

  • PDF

Diffusion-Weighted MR Imaging of the Brain Tumors: The Clinical Usefulness (두개강내 종양의 확산강조자기공명영상: 임상적 유용성)

  • 이영철;서정진;정광우;강형근;김윤현
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.34-41
    • /
    • 2000
  • Purpose: To evaluate the clinical usefulness of diffusion weighted MR imaging(DWI) in the differential diagnosis of brain tumors. Materials and methods: DWI and conventional MR images of nineteen patients with brain tumors(10 metastatic tumors, 4 high grade gliomas, 4 low grade astrocytomas, one oligodendroglioma)were obtained on 1.5T unit. DWI was obtained using single shot spin echo planar imaging with b-value near 1000. We analyzed the signal intensities of lesions including solid portion, necrotic or cystic portion and peritumoral edema of brain tumors (classified five grades comparison with the signal intensities of brain parenchyma and CSF)and calculate the SIR(signal intensity ratio)of lesions to the contralateral normal brain parenchyma. We analyzed statistically the signal intensities and SIR of tumors using independence T test. Results: In solid portions of tumors, all the metastatic tumors and high grade gliomas showed high signal intensities, but low grade astrocytomas and oligodendroglioma showed iso or slight high signal intensities to the normal brain parenchyma. The SIR of solid portion has positive correlation with malignant pot ential(metastatic tumors 1.52, high grade gliomas 1.38, low grade astrocytomas 1.16, oligodendroglioma 1.31)(p < 0.05). In peritumoral edema where seen in 14 tumors, seven of 10 metastatic tumors and two of 4 high grade gliomas showed iso signal intensities, whereas edemas in other 5 brain tumors showed hyperintense to the normal brain parenchyma. The SIRs of peritumoral edemas in metastatic tumors (1.14) was lower than high grade gliomas(1.31),but statistically insignificant. The SIR of cystic or necrotic portion of brain tumors was 0.63. In non enhancing solid portions, three of six cases showed hyperintense to the adjacent peritumoral edema. Conclusion: On DWI, the signal intensities of solid portion has positive correlation with malignant potential, and perilesional edema of brain tumors appear various signal intensities owing to "T2 shine through effect" and the extensiveness of vasogenic edema. Another merit using DWI on the evaluation of brain tumors is to improved better delineation of tumor margins from the adjacent edemas, especially at the non enhancing solid portion of the tumors.

  • PDF

Analysis and Study for Appropriate Deep Neural Network Structures and Self-Supervised Learning-based Brain Signal Data Representation Methods (딥 뉴럴 네트워크의 적절한 구조 및 자가-지도 학습 방법에 따른 뇌신호 데이터 표현 기술 분석 및 고찰)

  • Won-Jun Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.137-142
    • /
    • 2024
  • Recently, deep learning technology has become those methods as de facto standards in the area of medical data representation. But, deep learning inherently requires a large amount of training data, which poses a challenge for its direct application in the medical field where acquiring large-scale data is not straightforward. Additionally, brain signal modalities also suffer from these problems owing to the high variability. Research has focused on designing deep neural network structures capable of effectively extracting spectro-spatio-temporal characteristics of brain signals, or employing self-supervised learning methods to pre-learn the neurophysiological features of brain signals. This paper analyzes methodologies used to handle small-scale data in emerging fields such as brain-computer interfaces and brain signal-based state prediction, presenting future directions for these technologies. At first, this paper examines deep neural network structures for representing brain signals, then analyzes self-supervised learning methodologies aimed at efficiently learning the characteristics of brain signals. Finally, the paper discusses key insights and future directions for deep learning-based brain signal analysis.

Improved Perfusion Contrast and Reliability in MR Perfusion Images Using A Novel Arterial Spin Labeling

  • Jahng, Geon-Ho;Xioaping Zhu;Gerald Matson;Weiner, Michael-W;Norbert Schuff
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.341-344
    • /
    • 2002
  • Neurodegenerative disorders, like Alzheimer's disease, are often accompanied by reduced brain perfusion (cerebral blood flow). Using the intrinsic magnetic properties of water, arterial spin labeling magnetic resonance imaging (ASLMRI) can map brain perfusion without injection of radioactive tracers or contrast agents. However, accuracy in measuring perfusion with ASL-MRI can be limited because of contributions to the signal from stationary spins and because of signal modulations due to transient magnetic field effects. The goal was to optimize ASL-MRI for perfusion measurements in the aging human brain, including brains with Alzheimer's disease. A new ASL-MRI sequence was designed and evaluated on phantom and humans. Image texture analysis was performed to test quantitatively improvements. Compared to other ASL-MRI methods, the newly designed sequence provided improved signal to noise ratio improved signal uniformity across slices, and thus, increased measurement reliability. This new ASL-MRI sequence should therefore provide improved measurements of regional changes of brain perfusion in normal aging and neurodegenerative disorders.

  • PDF

Changes in EEG Activity Synchronized with EMG output of Biceps and Signal Control Possibility (이두근의 근전도 출력과 동기화된 뇌파의 활성도 변화와 신호의 제어 가능성)

  • Jeon, Bu-Il;Cho, Hyun-Chan
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1195-1201
    • /
    • 2018
  • This paper interprets the relationship between the physical activity of the human and the signal of the brain to show the meaningful results in the process of sending and receiving information to the connected muscles. When a person works or thinks, a specific brain signal is generated from the brain and being trasmmited to the connected part. The EMG signal, which has muscle activity information, outputs the result of the muscle activation as an electrical signal, which outputs muscle activity information usually due to muscle contraction and relaxation. The purpose of this study is to analyze the relationship between the two signals, which are difficult to identify easily by visual data extraction and data acquisition by extracting such EMG and EMG in real time.

Optimal Flip Angle for T2-Weighted Effect in Micro 4.7T MRI SE Sequence (마이크로 4.7T MRI SE Sequence에서 T2강조효과를 위한 최적의 Flip Angle)

  • Lee, Sang-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.113-117
    • /
    • 2019
  • The purpose of this study was to investigate the FA value which can produce the best T2-weighted images by measuring the signal intensity and noise according to the FA value change in the brain image and the abdominal image of the mouse using micro-MRI. Brain imaging and abdominal imaging of BALB / C mice weighing 20g were performed using 4.7T (Bruker BioSpin MRI GmbH) micro-MRI equipment, Turbo RARE-T2 (spin echo-T2) images were scanned at TR 3500 msec and TE 36 msec. The changes of the FA values were $60^{\circ}$, $80^{\circ}$, $100^{\circ}$, $120^{\circ}$, $140^{\circ}$, $160^{\circ}$ and $180^{\circ}$. We measured signal intensity according to FA values of ventricle and thalamus in brain imaging, The signal intensity of kidney and muscle around the kidney was measured in abdominal images. To obtain SNR and CNR, we measured the background signals of two different parts, not the tissue. In the brain (thalamus) image, the signal intensity of FA $100^{\circ}$ was 7,433 and SNR (6.49) was the highest. In the abdominal (kidney) image, the signal intensity was highest at 16,523 when FA was $120^{\circ}$, and the highest SNR was 8.54 when FA was $140^{\circ}$. The CNR value of the brain image was 1.38 at FA $60^{\circ}$ and gradually increased to 8.29 at FA $180^{\circ}$. The CNR value of the muscle adjacent to the kidney gradually increased from 2.36 when the FA value was $60^{\circ}$ and the highest value was 4,57 at the FA value $180^{\circ}$.