• Title/Summary/Keyword: brain recording

Search Result 93, Processing Time 0.025 seconds

Effects of Ginseng Radix and Ophiopogonis Tuber on Field Potentials in Rat Hippocampal and Cardiac Muscle Slices (인삼과 맥문동이 흰쥐 뇌와 심장의 field potential에 미치는 영향)

  • Lee Choong Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1463-1467
    • /
    • 2003
  • In the present study, the effects of Ginseng radix and Ophiopogonis tuber on field potentials in rat hippocampal slices and cardiac muscle slices were investigated by multi-channel extracellular recording using MED64 system. The field potentials in the brain slices represent synaptic transmission and nerve excitability, and the field potentials in heart muscles represent muscle contractility. The present results show that the aqueous extract of Ginseng radix enhanced field potentials in the both hippocampal slices and cardiac muscle slices. In contrast, the aqueous extract Ophiopogonis tuber exerted no significant effect on the field potentials in the hippocampal slices and cardiac muscle slices. These results suggest the possibility that Yin-Yang theory could be studied in relation with excitability in neurons and muscles.

The relationship between sleep physiological signals data and subjective feeling of sleep quality. (수면생리신호와 수면 만족감과의 관계)

  • 이현자;박세진
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.181-185
    • /
    • 2002
  • The purpose of this study was to find out the relationship between sleep physiological signals data and subjective feeling of sleep quality. Sixteen subjective were investigated and they slept on both comfortable mattress and uncomfortable mattress. Information of sleep stage is one of the most important clues for sleep quality. Polysomnography is basically the recording of sleep. The several channels of brain waves (EEG), eyes (EOG), chin movements (EMG) and heart (ECG) were monitored. Sixteen subjects spent 6 days and nights in the laboratory and the data of sleeping 7h for each of 3 nights was analyzed. Percentage of deep sleep (III and IV, sleep efficiency, WASO, stage 1 and subjective feeling of sleep quality were significantly affected with mattress types (comfortable and uncomfortable mattress). When subjects slept on comfortable beds, percentage of deep sleep and sleep efficiency were higher than those of uncomfortable bed. The percentages of wake after sleep onset and stage 1 were lower when subject slept in a comfortable bed. The subjective feeling of sleep quality agreed with the recorded sleep data also.

  • PDF

The Neurophysiological Approaches in Animal Experiments (신경생리학적(神經生理學的) 동물실험(動物實驗))

  • Cheon, Jin-Sook
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.3-16
    • /
    • 1998
  • The neurophysiological study has been widely used in search of the relationship between brain and behavior. The basic techniques for the animal experiments of this kind such as stereotaxic techniques, lesioning methods, the methods of electrical stimulation and recording, and confirmation of histological location were briefly reviewed. Nevertheless, the importance of complementary neurochemical, neuroanatomical and behavioral studies can not be neglected.

  • PDF

Effects of human growth hormone on gonadotropin-releasing hormone neurons in mice

  • Bhattarai, Janardhan P.;Kim, Shin-Hye;Han, Seong-Kyu;Park, Mi-Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.9
    • /
    • pp.845-851
    • /
    • 2010
  • Purpose: Recombinant human growth hormone (rhGH) has been widely used to treat short stature. However, there are some concerns that growth hormone treatment may induce skeletal maturation and early onset of puberty. In this study, we investigated whether rhGH can directly affect the neuronal activities of of gonadotropin-releasing hormone (GnRH). Methods: We performed brain slice gramicidin-perforated current clamp recording to examine the direct membrane effects of rhGH on GnRH neurons, and a whole-cell voltage-clamp recording to examine the effects of rhGH on spontaneous postsynaptic events and holding currents in immature (postnatal days 13-21) and adult (postnatal days 42-73) mice. Results: In immature mice, all 5 GnRH neurons recorded in gramicidin-perforated current clamp mode showed no membrane potential changes on application of rhGH (0.4, $1{\mu}g/mL$). In adult GnRH neurons, 7 (78%) of 9 neurons tested showed no response to rhGH ($0.2-1{\mu}g/mL$) and 2 neurons showed slight depolarization. In 9 (90%) of 10 immature neurons tested, rhGH did not induce any membrane holding current changes or spontaneous postsynaptic currents (sPSCs). There was no change in sPSCs and holding current in 4 of 5 adult GnRH neurons. Conclusion: These findings demonstrate that rhGH does not directly affect the GnRH neuronal activities in our experimental model.

Common Practices in Clinical Electroencephalography (임상뇌파검사의 일반적인 관행)

  • Hyun, Soon-Chul;Kim, Dongyeop
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.4
    • /
    • pp.296-308
    • /
    • 2021
  • Electroencephalography (EEG) provides the most accurate and quickest diagnosis of epilepsy. It is also an important examination for the real-time evaluation of brain function and seizures, no matter where. In the field of epilepsy, it is appropriate for a clinical pathologist with considerable knowledge of EEG and clinical experience to perform the role of a Physician Assistant (PA). The electrode attachment method is based on the international 10-20 system. The EEG reading is mainly taken by longitudinal bipolar montage. However, a reading using only one montage may result in an error. Hence, two or more montages should be used for readings according to the clinical situation. In the EEG, electric potentials are seen as contour lines. The most important principle in EEG reading is under-reading, not over-reading. The higher the repetitions of the EEG recording, the greater the sensitivity of the reading. For a good reading, the EEG recording must be of good quality. So, the relationship between the neurologist and the EEG technician is very important. In the future, it is expected that the field of activities of the EEG technician with abundant EEG reading experience and clinical practical knowledge will be further expanded.

Effects of Fermented Scutellaria Baicalensis Extract on H2O2 - Induced Impairment of Long-term Potentiation in Hippocampal CA1 Area of Rats (흰쥐 해마 CA1 영역에서 H2O2에 의한 장기강화 억제에 대한 발효황금 추출물의 효과)

  • Heo, Jun Ho;Rong, Zhang Xiao;Kim, Min Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.6
    • /
    • pp.356-362
    • /
    • 2019
  • Scutellaria baicalensis (SB) has widely used in the treatment for various brain diseases in the field of Oriental medicine. Biofermantation of SB can make major chemical constituents of SB to pass blood-brain barrier easily and to have more potent anti-oxidant ability. There is a little information about the contribution of fermented SB (FSB) to the formation or maintenance of the neural plasticity in the hippocampus. The purpose of this study was to evaluate effects of FSB extract on hydrogen peroxide (H2O2) - induced impairments of the induction and maintenance of long-term potentiation (LTP), an electrophysiological marker for the neural plasticity in the hippocampus. From hippocampal slices of rats, the field excitatory postsynaptic potentials (fEPSPs) were evoked by the electrical stimulation to the Schaffer collaterals - commissural fibers in the CA1 areas and LTP by theta-burst stimulation by using 64 - channels in vitro multi-extracellular recording system. In order to induce oxidative stress to hippocampal slices two different concentrations (200, 400 μM) of H2O2 were given to the perfused aCSF before and after the LTP induction, respectively. The ethanol extract of FBS with concentration of 25 ㎍/ml, 50 ㎍/ml was diluted in perfused aCSF that had 200 μM H2O2, respectively. Oxidative stress by the treatment of H2O2 resulted in decrease of the induction rate of LTP in the CA1 area with a dose - dependent manner. However, the ethanol extract of FSB prevented the reduction of the induction rate of LTP caused by H2O2 - induced oxidative stress with a dose - dependent manner. These results may support a potential application of FSB to ameliorate impairments of hippocampal dependent neural plasticity or memory caused by oxidative stress.

Intraoperative Monitoring of Motor-Evoked Potentials for Supratentorial Tumor Surgery

  • Lee, Jung Jae;Kim, Young Il;Hong, Jae Taek;Sung, Jae Hoon;Lee, Sang Won;Yang, Seung Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.2
    • /
    • pp.98-102
    • /
    • 2014
  • Objective : The purpose of this study was to assess the feasibility and clinical efficacy of motor evoked potential (MEP) monitoring for supratentorial tumor surgery. Methods : Between 2010 and 2012, to prevent postoperative motor deterioration, MEP recording after transcranial stimulation was performed in 84 patients with supratentorial brain tumors (45 males, 39 females; age range, 24-80 years; median age, 58 years). MEP monitoring results were correlated with postoperative motor outcome compared to preoperative motor status. Results : MEP recordings were stable in amplitude (<50% reduction in amplitude) during surgery in 77 patients (91.7%). No postoperative motor deficit was found in 66 out of 77 patients with stable MEP amplitudes. However, postoperative paresis developed in 11 patients. False negative findings were associated with edema in peri-resectional regions and postoperative bleeding in the tumor bed. MEP decrease in amplitude (>50%) occurred in seven patients (8.3%). However, no deficit occurred postoperatively in four patients following preventive management during the operation. Three patients had permanent paresis, which could have been associated with vascular injury during tumor resection. Conclusions : MEP monitoring during supratentorial tumor surgery is feasible and safe. However, false negative MEP results associated with postoperative events may occur in some patients. To achieve successful monitoring, collaboration between surgeon, anesthesiologist and an experienced technician is mandatory.

5-Hydroxytryptamine Inhibits Glutamatergic Synaptic Transmission in Rat Corticostriatal Brain Slice

  • Cho, Hyeong-Seok;Choi, Se-Joon;Kim, Ki-Jung;Lee, Hyun-Ho;Kim, Seong-Yun;Cho, Young-Jin;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.255-262
    • /
    • 2005
  • Striatum is involved in the control of movement and habitual memory. It receives glutamatergic input from wide area of the cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from the raphe nuclei. In our study, the effects of 5-HT on synaptic transmission were studied in the rat corticostriatal brain slice using in vitro whole-cell recording technique. 5-HT inhibited the amplitude as well as frequency of spontaneous excitatory postsynaptic currents (sEPSC) significantly, and neither ${\gamma}-aminobutyric$ acid (GABA)A receptor antagonist bicuculline (BIC), nor $N-methyl-_{D}-aspartate$ (NMDA) receptor antagonist, $_{DL}-2-amino-5-phosphonovaleric$ acid (AP-V) could block the effect of 5-HT. In the presence non-NMDA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenxo[f] quinoxaline-7-sulfonamide (NBQX), the inhibitory effect of 5-HT was blocked. We also figured out that 5-HT change the channel kinetics of the sEPSC. There was a significant increase in the rise time during the 5-HT application. Our results suggest that 5-HT has an effect on both pre- and postsynaptic site with decreasing neurotransmitter release probability of glutamate and decreasing the sensitivity to glutamate by increasing the rise time of non-NMDA receptor mediated synaptic transmission in the corticostriatal synapses.

Dopamine Modulates Corticostriatal Synaptic Transmission through Both $D_1$ and $D_2$ Receptor Subtypes in Rat Brain

  • Lee, Hyun-Ho;Choi, Se-Joon;Kim, Ki-Jung;Cho, Hyeong-Seok;Kim, Seong-Yun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.263-268
    • /
    • 2005
  • Striatum has important roles in motor control, habitual learning and memory. It receives glutamatergic inputs from neocortex and thalamus, and dopaminergic inputs from substantia nigra. We examined effects of dopamine (DA) on the corticostriatal synaptic transmission using in vitro extracellular recording technique in rat brain corticostriatal slices. Synaptic responses were elicited by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. Corticostriatal population spike (PS) amplitudes were decreased ($39.4{\pm}7.9$%) by the application of $100{\mu}M$ DA. We applied receptor subtype specific agonists and antagonists and characterized the modulation of corticostriatal synaptic transmission by different DA receptor subtypes. $D_2$ receptor agonist (quinpirole), antagonist (sulpiride), and $D_1$ receptor antagonist (SKF 83566), but not $D_1$ receptor agonist (SKF 38393), induced significantly the reduction of striatal PS. Pretreatment neither with SKF 83566 nor sulpiride significantly affected corticostriatal synaptic inhibition by DA. However, the inhibition of DA was completely blocked by pretreatment with mixed solution of both SKF 83566 and sulpiride. These results suggest that DA inhibits corticostriatal synaptic transmission through both $D_1$ and $D_2$ receptors in concert with each other.

Suppression by Microinjection of Bicuculline into Brain Stem Nuclei of Dorsal Horn Neuron Responsiveness in Neuropathic Rats (신경병증성통증 모델쥐에서 뇌간핵 부위에 미세 주입한 Bicuculline에 의한 척수후각세포의 반응도 억제)

  • Leem, Joong-Woo;Choi, Yoon;Lee, Jae-Hwan;Nam, Taick-Sang;Paik, Kwang-Se
    • The Korean Journal of Pain
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 1998
  • Background: The present study was conducted to investigate effects of microinjection of bicuculline, GABA-A receptor antagonist, into the brain stem nuclei on the dorsal horn neuron responsiveness in rats with an experimental peripheral neuropathy. Methods: An experimental neuropathy was induced by a unilateral ligation of L5~L6 spinal nerves of rats. After 2~3 weeks after the surgery, single-unit recording was made from wide dynamic range (WDR) neurons in the spinal cord dorsal horn. Results: Responses of WDR neurons to both noxious and innocuous mechanical stimuli applied to the somatic receptive fields were enhanced on the nerve injured side. These enhanced responsiveness of WDR neurons were suppressed by microinjection of bicuculline into periaqueductal gray(PAG) or nucleus reticularis gigantocellularis(Gi). A similar suppression was also observed when morphine was microinjected into PAG or Gi. Suppressive action by Gi-bicuculline was reversed by naloxonazine, ${\mu}$-opioid receptor antagonist, microinjected into PAG whereas PAG-bicuculline induced suppression was not affected by naloxonazine injection into Gi. Gi-bicuculline induced suppression were reversed by a transection of dorsolateral funiculus(DLF) of the spinal cord. Conclusions: The results suggest that endogenous opioids, via acting on GABAergic interneurons in PAG and Gi, may be involved in the control of neuropathic pain by activating the descending inhibitory pathways that project to the spinal dorsal horn through DLF to inhibit the responsiveness of WDR neurons.

  • PDF