• Title/Summary/Keyword: brain imaging techniques

Search Result 85, Processing Time 0.026 seconds

A brief review of non-invasive brain imaging technologies and the near-infrared optical bioimaging

  • Beomsue Kim;Hongmin Kim;Songhui Kim;Young-ran Hwang
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.9.1-9.10
    • /
    • 2021
  • Brain disorders seriously affect life quality. Therefore, non-invasive neuroimaging has received attention to monitoring and early diagnosing neural disorders to prevent their progress to a severe level. This short review briefly describes the current MRI and PET/CT techniques developed for non-invasive neuroimaging and the future direction of optical imaging techniques to achieve higher resolution and specificity using the second near-infrared (NIR-II) region of wavelength with organic molecules.

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Neuroimaging Studies of Chronic Pain

  • Kang, Do-Hyung;Son, June-Hee;Kim, Yong-Chul
    • The Korean Journal of Pain
    • /
    • v.23 no.3
    • /
    • pp.159-165
    • /
    • 2010
  • The evolution of brain imaging techniques over the last decade has been remarkable. Along with such technical developments, research into chronic pain has made many advances. Given that brain imaging is a non-invasive technique with great spatial resolution, it has played an important role in finding the areas of the brain related to pain perception as well as those related to many chronic pain disorders. Therefore, in the near future, brain imaging techniques are expected to be the key to the discovery of many unknown etiologies of chronic pain disorders and to the subjective diagnoses of such disorders.

The Emerging Role of Fast MR Techniques in Traumatic Brain Injury

  • Yoo, Roh-Eul;Choi, Seung Hong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.76-80
    • /
    • 2021
  • Post-concussion syndrome (PCS) following mild traumatic brain injury (mTBI) is a major factor that contributes to the increased socioeconomic burden caused by TBI. Myelin loss has been implicated in the development of PCS following mTBI. Diffusion tensor imaging (DTI), a traditional imaging modality for the evaluation of axonal and myelin integrity in mTBI, has intrinsic limitations, including its lack of specificity and its time-consuming and labor-intensive post-processing analysis. More recently, various fast MR techniques based on multicomponent relaxometry (MCR), including QRAPMASTER, mcDESPOT, and MDME sequences, have been developed. These MCR-based sequences can provide myelin water fraction/myelin volume fraction, a quantitative parameter more specific to myelin, which might serve as a surrogate marker of myelin volume, in a clinically feasible time. In this review, we summarize the clinical application of the MCR-based fast MR techniques in mTBI patients.

Advances and Applications of Mass Spectrometry Imaging in Neuroscience: An Overview

  • Bharath S. Kumar
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.57-78
    • /
    • 2023
  • Understanding the chemical composition of the brain helps researchers comprehend various neurological processes effectively. Understanding of the fundamental pathological processes that underpin many neurodegenerative disorders has recently advanced thanks to the advent of innovative bioanalytical techniques that allow high sensitivity and specificity with chemical imaging at high resolution in tissues and cells. Mass spectrometry imaging [MSI] has become more common in biomedical research to map the spatial distribution of biomolecules in situ. The technique enables complete and untargeted delineation of the in-situ distribution characteristics of proteins, metabolites, lipids, and peptides. MSI's superior molecular specificity gives it a significant edge over traditional histochemical methods. Recent years have seen a significant increase in MSI, which is capable of simultaneously mapping the distribution of thousands of biomolecules in the tissue specimen at a high resolution and is otherwise beyond the scope of other molecular imaging techniques. This review aims to acquaint the reader with the MSI experimental workflow, significant recent advancements, and implementations of MSI techniques in visualizing the anatomical distribution of neurochemicals in the human brain in relation to various neurogenerative diseases.

The Role of Functional Imaging Techniques in the Dementia (치매 환자에서 기능 영상법의 역할)

  • Ryu, Young-Hoon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.209-217
    • /
    • 2004
  • Evaluation of dementia in patients with early symptoms of cognitive decline is clinically challenging, but the need for early, accurate diagnosis has become more crucial, since several medication for the treatment of mild to moderate Alzheimer' disease are available. Many neurodegenerative diseases produce significant brain function alteration even when structural imaging (CT or MRI) reveal no specific abnormalities. The role of PET and SPECT brain imaging in the initial assessment and differential diagnosis of dementia is beginning to evolve vapidly and growing evidence indicates that appropriate incorporation of PET into the clinical work up can improve diagnostic and prognostic accuracy with respect to Alzheimer's disease, the most common cause of dementia in the geriatric population. in the fast few years, studios comparing neuropathologic examination with PET have established reliable and consistent accuracy for diagnostic evaluations using PET - accuracies substantially exceeding those of comparable studies of diagnostic value of SPECT or of both modalities assessed side by side, or of clinical evaluations done without nuclear imaging. This review deals the role of functional brain imaging techniques in the evaluation of dementias and the role of nuclear neuroimaging in the early detection and diagnosis of Alzheimer's disease.

Brain Tumor Detection Based on Amended Convolution Neural Network Using MRI Images

  • Mohanasundari M;Chandrasekaran V;Anitha S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2788-2808
    • /
    • 2023
  • Brain tumors are one of the most threatening malignancies for humans. Misdiagnosis of brain tumors can result in false medical intervention, which ultimately reduces a patient's chance of survival. Manual identification and segmentation of brain tumors from Magnetic Resonance Imaging (MRI) scans can be difficult and error-prone because of the great range of tumor tissues that exist in various individuals and the similarity of normal tissues. To overcome this limitation, the Amended Convolutional Neural Network (ACNN) model has been introduced, a unique combination of three techniques that have not been previously explored for brain tumor detection. The three techniques integrated into the ACNN model are image tissue preprocessing using the Kalman Bucy Smoothing Filter to remove noisy pixels from the input, image tissue segmentation using the Isotonic Regressive Image Tissue Segmentation Process, and feature extraction using the Marr Wavelet Transformation. The extracted features are compared with the testing features using a sigmoid activation function in the output layer. The experimental findings show that the suggested model outperforms existing techniques concerning accuracy, precision, sensitivity, dice score, Jaccard index, specificity, Positive Predictive Value, Hausdorff distance, recall, and F1 score. The proposed ACNN model achieved a maximum accuracy of 98.8%, which is higher than other existing models, according to the experimental results.

MR imaging of cortical activation by painful peripheral stimulation in rats (쥐에서 말초 자극에 따른 뇌피질 활성화의 자기공명 영상)

  • Lee, Bae-Hwan;Cha, Myeoung-Hoon;Cheong, Chae-Joon;Lee, Kyu-Hong;Lee, Chul-Hyun;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.183-185
    • /
    • 2009
  • As imaging technology develops, magnetic resonance imaging (MRI) techniques have contributed to the understanding of brain function by providing anatomical structure of the brain and functional imaging related to information processing. Manganese-enhanced MRI (MEMRI) techniques can provide useful information about functions of the nervous system. However, systematic studies regarding information processing of pain have not been conducted. The purpose of this study was to detect brain activation during painful electrical stimulation using MEMRI with high spatial resolution. Male Sprague-Dawley rats (250-300 g) were divided into 3 groups: normal control, sham stimulation, and electric stimulation. Rats were anesthetized with 2.5% isoflurane for surgery. Polyethylene catheter (PE-10) was placed in the external carotid artery to administrate mannitol and MnCl2. The blood brain barrier (BBB) was broken by 20% D-mannitol under anesthesia mixed with urethane and a-chloralose. The hind limb was electrically stimulated with a 2Hz (10V) frequency while MnCl2 was infused. Brain activation induced by electrical stimulation was detected using a 4.7 T MRI. Remarkable signal enhancement was observed in the primary sensory that corresponds to sensory tactile stimulation at the hind limb region. These results suggest that signal enhancement is related to functional activation following electrical stimulation of the peripheral receptive field.

  • PDF

Pain, Acupuncture and Brain Imaging (통증, 침술 및 뇌영상)

  • Kwak, Yong-Ho;Won, Ran;Lee, Hye-Jung;Lee, Bae-Hwan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.551-558
    • /
    • 2010
  • Pain is very complex and multi-level experience that should be objective or subjective. Acupuncture is a traditional method to heal the pain and have been based on meridian theory. There have been many clinical evidences showing the pain-relieving effect of acupuncture but science-based understanding of it was poor. Furthermore in daily life, we feel huge gap between the source of pain and pain control by acupuncture stimulation. However, the underlying connection between pain control and acupuncture stimulation has been reported in many recent reports. In this paper, we briefly introduce the brain imaging techniques (functional magnetic resonance images, positron emission tomography, electroencephalograph, and magnetoencephalography) and review researches in pain and acupuncture. Through this, the brain areas that activated by pain and acupuncture will be verified, and compared each other regarding their specificity and similarity. In addition, detailed understanding of brain function which is related to pain and acupuncture analgesia through brain imaging techniques will be discussed.

  • PDF

Combining Neuroinformatics Databases for Multi-Level Analysis of Brain Disorders

  • Yu, Ha Sun;Bang, Joon;Jo, Yousang;Lee, Doheon
    • Interdisciplinary Bio Central
    • /
    • v.4 no.3
    • /
    • pp.7.1-7.8
    • /
    • 2012
  • With the development of many methods of studying the brain, the field of neuroscience has generated large amounts of information obtained from various techniques: imaging techniques, electrophysiological techniques, techniques for analyzing brain connectivity, techniques for getting molecular information of the brain, etc. A plenty of neuroinformatics databases have been made for storing and sharing this useful information and those databases can be publicly accessed by researchers as needed. However, since there are too many neuroinformatics databases, it is difficult to find the appropriate database depending on the needs of researcher. Moreover, many researchers in neuroscience fields are unfamiliar with using neuroinformatics databases for their studies because data is too diverse for neuroscientists to handle this and there is little precedent for using neuroinformatics databases for their research. Therefore, in this article, we review databases in the field of neuroscience according to both their methods for obtaining data and their objectives to help researchers to use databases properly. We also introduce major neuroinformatics databases for each type of information. In addition, to show examples of novel uses of neuroinformatics databases, we represent several studies that combine neuroinformatics databases of different information types and discover new findings. Finally, we conclude our paper with the discussion of potential applications of neuroinformatics databases.