• Title/Summary/Keyword: brain imaging devices

Search Result 7, Processing Time 0.018 seconds

New Trend of Pain Evaluation by Brain Imaging Devices (뇌기능 영상장치를 이용한 통증의 평가)

  • Lee Sung-Jin;Bai Sun-Joon
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.365-374
    • /
    • 2005
  • Pain has at least two dimensions such as somatosensory qualities and affect and patients are frequently asked to score the intensity of their pain on a numerical pain rating scale. However, the use of a undimensional scale is questionable in view of the belief, overwhelmingly supported by clinical experience as well as by empirical evidence from multidimensional scaling and other sources, that pain has multidimensions such as sensory-discrimitive, motivational-affective and cognitive-evaluative The study of pain has recently received much attention, especially in understanding its neurophysiology by using new brain imaging techniques, such as positron emission tomography(PET) and functional magnetic resonance imaging (fMRI), both of which allow us to visualize brain function in vivo. Also the new brainimaging devices allow us to evaluate the patients pain status and plan To treat patients objectively. Base4 on our findings we presented what are the new brain imaging devices and the results of study by using brain imaging devices.

  • PDF

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

A Tapered Slot Antenna with Asymmetric Corrugations for a Microwave Brain Imaging System (전자파 두뇌 영상장치용 비대칭형 Corrugated 테이퍼드 슬롯 안테나)

  • Lee, Juneseok;Park, Joongki;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.348-351
    • /
    • 2013
  • Recently, a brain imaging system with microwave devices has been proposed. The brain imaging system requires a small antenna which has ultra wide band(UWB) operating frequency bandwidth(0.5~2 GHz) and non-varying boresight of antenna over the frequency band. This paper proposes asymmetric corrugations on a tapered slot antenna (TSA) so that the size of the TSA is reduced by 14 % while 10 dB return loss bandwidth is satisfied over the operating frequency band from 0.5 GHz to 2 GHz. A miniaturized TSA with symmetric corrugations shows tilted boresight whilst frequency is getting lower; however, the proposed TSA with asymmetric corrugations maintains direction of boresight for different frequencies. This enhancements make an asymmetric corrugated TSA meet the requirement of the brain imaing system.

Cost-Effective Neuro-Modulation Device for Medical Imaging (의료영상 촬영을 위한 비용-효율적인 신경조절 장비)

  • Seoung-Min Hwang;YeongBeen Choi;Gyunhen Lee;Young-Jin Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1165-1170
    • /
    • 2023
  • In this study, we aimed to develop a cost-effective neuro-modulation device for use in neuroscientific and clinical medical imaging applications. To achieve this, we designed and fabricated a brain neuro-modulation device with a material cost of less than $500, and subsequently evaluated its performance. The measured performance was found to be comparable to existing medical devices (TENS), with the developed device being compact in size, measuring less than 3 cm by 3 cm. The outcomes of this study are expected to be applicable in accelerating research and development in related fields, as well as in the rapid commercialization of neuro-modulation technology. Furthermore, it is anticipated that this work will contribute to advancements in functional radiological medical imaging technology and enhance accessibility to brain science and brain stimulation technology.

A Study on the MEG Imaging (MEG 영상진단 검사에 관한 연구)

  • Kim, Jong-Gyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.2
    • /
    • pp.123-128
    • /
    • 2005
  • Magnetoencephalography (MEG) is the measurement of the magnetic fields produced by electrical activity in the brain, usually conducted externally, using extremely sensitive devices such as Superconducting Quantum Interference Device (SQUID). MEG needs complex and expensive measurement settings. Because the magnetic signals emitted by the brain are on the order of a few femtoteslas (1 fT = 10-15T), shielding from external magnetic signals, including the Earth's magnetic field, is necessary. An appropriate magnetically shielded room is very expensive, and constitutes the bulk of the expense of an MEG system. MEG is a relatively new technique that promises good spatial resolution and extremely high temporal resolution, thus complementing other brain activity measurement techniques such as electroencephalography (EEG), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI). MEG combines functional information from magnetic field recordings with structural information from MRI. The clinical uses of MEG are in detecting and localizing epileptic form spiking activity in patients with epilepsy, and in localizing eloquent cortex for surgical planning in patients with brain tumors. Magnetoencephalography may be used alone or together with electroencephalography, for the measurement of spontaneous or evoked activity, and for research or clinical purposes.

  • PDF

Analysis of the Imaging Dose for IGRT/Gated Treatments (영상유도 및 호흡동조 방사선치료에서의 영상장비에 의한 흡수선량 분석)

  • Shin, Jung-Suk;Han, Young-Yih;Ju, Sang-Gyu;Shin, Eun-Hyuk;Hong, Chae-Seon;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.1
    • /
    • pp.42-48
    • /
    • 2009
  • Purpose: The introduction of image guided radiation therapy/four-dimensional radiation therapy (IGRT/4DRT) potentially increases the accumulated dose to patients from imaging and verification processes as compared to conventional practice. It is therefore essential to investigate the level of the imaging dose to patients when IGRT/4DRT devices are installed. The imaging dose level was monitored and was compared with the use of pre-IGRT practice. Materials and Methods: A four-dimensional CT (4DCT) unit (GE, Ultra Light Speed 16), a simulator (Varian Acuity) and Varian IX unit with an on-board imager (OBI) and cone beam CT (CBCT) were installed. The surface doses to a RANDO phantom (The Phantom Laboratory, Salem, NY USA) were measured with the newly installed devices and with pre-existing devices including a single slice CT scanner (GE, Light Speed), a simulator (Varian Ximatron) and L-gram linear accelerator (Varian, 2100C Linac). The surface doses were measured using thermo luminescent dosimeters (TLDs) at eight sites-the brain, eye, thyroid, chest, abdomen, ovary, prostate and pelvis. Results: Compared to imaging with the use of single slice non-gated CT, the use of 4DCT imaging increased the dose to the chest and abdomen approximately ten-fold ($1.74{\pm}0.34$ cGy versus $23.23{\pm}3.67$cGy). Imaging doses with the use of the Acuity simulator were smaller than doses with the use of the Ximatron simulator, which were $0.91{\pm}0.89$ cGy versus $6.77{\pm}3.56$ cGy, respectively. The dose with the use of the electronic portal imaging device (EPID; Varian IX unit) was approximately 50% of the dose with the use of the L-gram linear accelerator ($1.83{\pm}0.36$ cGy versus $3.80{\pm}1.67$ cGy). The dose from the OBI for fluoroscopy and low-dose mode CBCT were $0.97{\pm}0.34$ cGy and $2.3{\pm}0.67$ cGy, respectively. Conclusion: The use of 4DCT is the major source of an increase of the radiation (imaging) dose to patients. OBI and CBCT doses were small, but the accumulated dose associated with everyday verification need to be considered.

Altered Functional Connectivity of the Executive Control Network During Resting State Among Males with Problematic Hypersexual Behavior (문제적 과잉 성 행동자의 휴지기 상태 시 집행 통제 회로의 기능적 연결성 변화)

  • Seok, Ji-Woo
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2019
  • Individuals with problematic hypersexual behavior (PHB) evince the inability to control sexual impulses and arousal. Previous studies have identified that these characteristics are related to structural and functional changes in the brain region responsible for inhibitory functions. However, very little research has been conducted on the functional connectivity of these brain areas during the resting state in individuals with PHB. Therefore, this study used functional magnetic resonance imaging devices with the intention of identifying the deficit of the functional connectivity in the executive control network in individuals with PHB during the resting state. Magnetic resonance imaging data were obtained for 16 individuals with PHB and 19 normal controls with similar demographic characteristics. The areas related to the executive control network (LECN, RECN) were selected as the region of interest, and the correlation coefficient with time series signals between these areas was measured to identify the functional connectivity. Between groups analysis was also used. The results revealed a significant difference in the strength of the functional connectivity of the executive control network between the two groups. In other words, decreased functional connectivity was found between the superior/middle frontal gyrus and the caudate, and between the superior/middle frontal gyrus and the superior parietal gyrus/angular gyrus in individuals with PHB. In addition, these functional Connectivities related to the severity of hypersexual behavior. The findings of this study suggest that the inability to control sexual impulses and arousal in individuals with PHB might be related to the reduced functional connectivity of executive control circuits.