• Title/Summary/Keyword: brain image

Search Result 752, Processing Time 0.031 seconds

Brain Extraction of MR Images

  • Du, Ruoyu;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.455-458
    • /
    • 2010
  • Extracting the brain from magnetic resonance imaging head scans is an essential preprocessing step of which the accuracy greatly affects subsequent image analysis. The currently popular Brain Extraction Tool produces a brain mask which may be too smooth for practical use to reduce the accuracy. This paper presents a novel and indirect brain extraction method based on non-brain tissue segmentation. Based on ITK, the proposed method allows a non-brain contour by using region growing to match with the original image naturally and extract the brain tissue. Experiments on two set of MRI data and 2D brain image in horizontal plane and 3D brain model indicate successful extraction of brain tissue from a head.

A Novel Automatic Algorithm for Selecting a Target Brain using a Simple Structure Analysis in Talairach Coordinate System

  • Koo B.B.;Lee Jong-Min;Kim June Sic;Kim In Young;Kim Sun I.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.129-132
    • /
    • 2005
  • It is one of the most important issues to determine a target brain image that gives a common coordinate system for a constructing population-based brain atlas. The purpose of this study is to provide a simple and reliable procedure that determines the target brain image among the group based on the inherent structural information of three-dimensional magnetic resonance (MR) images. It uses only 11 lines defined automatically as a feature vector representing structural variations based on the Talairach coordinate system. Average characteristic vector of the group and the difference vectors of each one from the average vector were obtained. Finally, the individual data that had the minimum difference vector was determined as the target. We determined the target brain image by both our algorithm and conventional visual inspection for 20 healthy young volunteers. Eighteen fiducial points were marked independently for each data to evaluate the similarity. Target brain image obtained by our algorithm showed the best result, and the visual inspection determined the second one. We concluded that our method could be used to determine an appropriate target brain image in constructing brain atlases such as disease-specific ones.

Enhancement of MRI angiogram with modified MIP method

  • Lee, Dong-Hyuk;Kim, Jong-Hyo;Han, Man-Chung;Min, Byong-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.72-74
    • /
    • 1997
  • We have developed a 3-D image processing and display technique that include image resampling, modification of MIP, and fusion of MIP image and volumetric rendered image. This technique facilitates the visualization of the three-dimensional spatial relationship between vasculature and surrounding organs by overlapping the MIP image on the volumetric rendered image of the organ. We applied this technique to a MR brain image data to produce an MRI angiogram that is overlapped with 3-D volume rendered image of brain. MIP technique was used to visualize the vasculature of brain, and volume rendering was used to visualize the other structures of brain. The two images are fused after adjustment of contrast and brightness levels of each image in such a way that both the vasculature and brain structure are well visualized either by selecting the maximum value of each image or by assigning different color table to each image. The resultant image with this technique visualizes both the brain structure and vasculature simultaneously, allowing the physicians to inspect their relationship more easily. The presented technique will be useful for surgical planning for neurosurgery.

  • PDF

Usefulness of Image Registration in Brain Perfusion SPECT (Brain Perfusion SPECT에서 Image Registration의 유용성)

  • Song, Ho-June;Lim, Jung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.60-64
    • /
    • 2011
  • Purpose: The brain perfusion SPECT is the examination which is able to know adversity information related brain disorder. But brain perfusion SPECT has also high failure rates by patient's motions. In this case, we have to use two days method and patients put up with many disadvantages. We think that we don't use two days method in brain perfusion SPECT, if we can use registration method. So this study has led to look over registration method applications in brain perfusion SPECT. Materials and Methods: Jaszczak, Hoffman and cylindrical phantoms were used for acquiring SPECT image data on varying degree in x, y, z axes. The phantoms were filled with $^{99m}Tc$ solution that consisted of a radioactive concentration of 111 MBq/mL. Phantom images were acquired through scanning for 5 sec long per frame by using Triad XLT9 triple head gamma camera (TRIONIX, USA). We painted the ROI of registration image in brain data. So we calculated the ROIratio which was different original image counts and registration image counts. Results: When carring out the experiments under the same condition, total counts differential was from 3.5% to 5.7% (mean counts was from 3.4% to 6.8%) in phantom and patients data. In addition, we also run the experiments in the double activity condition. Total counts differential was from 2.6% to 4.9% (mean counts was from 4.1% to 4.9%) in phantom and patients data. Conclusion: We can know that original and registration data are little different in image analysis. If we use the image registration method, we can improve disadvantage of two days method in brain perfusion SPECT. But we must consider image registration about the distance differences in x, y, z axes.

  • PDF

Effects of Action Observation Training and Motor Image Training on Brain Activity (동작관찰 훈련과 운동 상상훈련이 뇌 활성상태에 미치는 효과)

  • Yang, Byung-Il;Park, Hyeong-Ki
    • The Journal of Korean Society for Neurotherapy
    • /
    • v.22 no.3
    • /
    • pp.7-10
    • /
    • 2018
  • Purpose The purpose of this study was to investigate the difference of brain activity during action observation training and image training throughout EEG. Methods This study was participated 1 healthy college student without mental illness or cognitive impairment. The subject was randomly selected from university students and was interested in participating in the experiment. The purpose of this study was to investigate the visual and auditory stimuli (action observation) and brain image training. Results The results of our study, EEG value measured o.1 during resting. But brain activity changed to 0.3 during action observation. Finally, it changed to .05 after brain image training. Conclusion EEG measurement results were showed that after watching the Ball squat video, Brain activity increased.

Anonymity of Medical Brain Images (의료 두뇌영상의 익명성)

  • Lee, Hyo-Jong;Du, Ruoyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • The current defacing method for keeping an anonymity of brain images damages the integrity of a precise brain analysis due to over removal, although it maintains the patients' privacy. A novel method has been developed to create an anonymous face model while keeping the voxel values of an image exactly the same as that of the original one. The method contains two steps: construction of a mockup brain template from ten normalized brain images and a substitution of the mockup brain to the brain image. A level set segmentation algorithm is applied to segment a scalp-skull apart from the whole brain volume. The segmented mockup brain is coregistered and normalized to the subject brain image to create an anonymous face model. The validity of this modification is tested through comparing the intensity of voxels inside a brain area from the mockup brain with the original brain image. The result shows that the intensity of voxels inside from the mockup brain is same as ones from an original brain image, while its anonymity is guaranteed.

Brain MR Multimodal Medical Image Registration Based on Image Segmentation and Symmetric Self-similarity

  • Yang, Zhenzhen;Kuang, Nan;Yang, Yongpeng;Kang, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1167-1187
    • /
    • 2020
  • With the development of medical imaging technology, image registration has been widely used in the field of disease diagnosis. The registration between different modal images of brain magnetic resonance (MR) is particularly important for the diagnosis of brain diseases. However, previous registration methods don't take advantage of the prior knowledge of bilateral brain symmetry. Moreover, the difference in gray scale information of different modal images increases the difficulty of registration. In this paper, a multimodal medical image registration method based on image segmentation and symmetric self-similarity is proposed. This method uses modal independent self-similar information and modal consistency information to register images. More particularly, we propose two novel symmetric self-similarity constraint operators to constrain the segmented medical images and convert each modal medical image into a unified modal for multimodal image registration. The experimental results show that the proposed method can effectively reduce the error rate of brain MR multimodal medical image registration with rotation and translation transformations (average 0.43mm and 0.60mm) respectively, whose accuracy is better compared to state-of-the-art image registration methods.

A Deep Learning Method for Brain Tumor Classification Based on Image Gradient

  • Long, Hoang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1233-1241
    • /
    • 2022
  • Tumors of the brain are the deadliest, with a life expectancy of only a few years for those with the most advanced forms. Diagnosing a brain tumor is critical to developing a treatment plan to help patients with the disease live longer. A misdiagnosis of brain tumors will lead to incorrect medical treatment, decreasing a patient's chance of survival. Radiologists classify brain tumors via biopsy, which takes a long time. As a result, the doctor will need an automatic classification system to identify brain tumors. Image classification is one application of the deep learning method in computer vision. One of the deep learning's most powerful algorithms is the convolutional neural network (CNN). This paper will introduce a novel deep learning structure and image gradient to classify brain tumors. Meningioma, glioma, and pituitary tumors are the three most popular forms of brain cancer represented in the Figshare dataset, which contains 3,064 T1-weighted brain images from 233 patients. According to the numerical results, our method is more accurate than other approaches.

Lossless Deformation of Brain Images for Concealing Identification (신원 은닉을 위한 두뇌 영상의 무손실 변경)

  • Lee, Hyo-Jong;Yu, Du Ruo
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.385-388
    • /
    • 2011
  • Patients' privacy protection is a heated issue in medical business, as medical information in digital format transmit everywhere through networks without any limitation. A current protection method for brain images is to deface from the brain image for patient's privacy. However, the defacing process often removes important brain voxels so that the defaced brain image is damaged for medical analysis. An ad-hoc method is proposed to conceal patient's identification by adding cylindrical mask, while the brain keep all important brain voxels. The proposed lossless deformation of brain image is verified not to loose any important voxels. Futhermore, the masked brain image is proved not to be recognized by others.

A Study on Prediction of the brain infarction period and transition direction using MR image (MR 영상을 이용한 뇌경색 시기판단과 전이방향에 관한 연구)

  • Ha, K.;Jung, P.S.;Park, B.R.;Ye, S.Y.;Kim, H.J.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.267-268
    • /
    • 1998
  • In this paper, we analysis 3 types of magnetic resonance image for determining whether brain infarction period is hyperacute or not. If its peirod is hyperacute, we can predict brain infarction transition direction. We use EPI(Echo Planar Image) for prediction of brain infarction transition direction. EPI is a good image for detecting brain infarction because EPI can detect the moving of water in brain which play an important role in deciding method of medical treatment. We utilize characteristics of 3 type of MRI and their relation in brain infarction patient for determining brain infarction period. By this method, we obtain each period characteristics and predict brain infarction transition direction more accurately comparing past method.

  • PDF