• Title/Summary/Keyword: brain connectivity

Search Result 98, Processing Time 0.026 seconds

Bibliometric analysis of source memory in human episodic memory research (계량서지학 방법론을 활용한 출처기억 연구분석: 인간 일화기억 연구를 중심으로)

  • Bak, Yunjin;Yu, Sumin;Nah, Yoonjin;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.23-50
    • /
    • 2022
  • Source memory is a cognitive process that combines the representation of the origin of the episodic experience with an item. By studying this daily process, researchers have made fundamental discoveries that make up the foundation of brain and behavior research, such as executive function and binding. In this paper, we review and conduct a bibliometric analysis on source memory papers published from 1989 to 2020. This review is based on keyword co-occurrence networks and author citation networks, providing an in-depth overview of the development of source memory research and future directions. This bibliometric analysis discovers a change in the research trends: while research prior to 2010 focused on individuality of source memory as a cognitive function, more recent papers focus more on the implication of source memory as it pertains to connectivity between disparate brain regions and to social neuroscience. Keyword network analysis shows that aging and executive function are continued topics of interest, although frameworks in which they are viewed have shifted to include developmental psychology and meta memory. The use of theories and models provided by source memory research seem essential for the future development of cognitive enhancement tools within and outside of the field of Psychology.

A Narrative Literature Review on the Neural Substrates of Cognitive Reserve: Focusing on the Resting-state Functional Magnetic Resonance Imaging Studies (인지예비능의 신경적 기질에 대한 서술적 문헌고찰 연구 : 휴지기 기능적 자기공명영상 연구를 중심으로)

  • Hyeonsang Shin;Woohyun Seong;Bo-in Kwon;Yeonju Woo;Joo-Hee Kim;Dong Hyuk Lee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Cognitive reserve (CR) is a concept that can explain the discrepancies between the pathologic burden of the disease and clinical manifestations. It refers to the individual susceptibility to age-related brain changes and pathologies related to Alzheimer's disease, thus recognized as a factor affecting the trajectories of the disease. The purpose of this study was to explore the current states of clinical studies on neural substrates of CR in Alzheimer's disease using functional magnetic resonance imaging. We searched for clinical studies on CR using fMRI in the Pubmed, Cochrane library, RISS, KISS and ScienceON on August 14, 2023. Once the online search was finished, studies were selected manually by the inclusion criteria. Finally, we analyzed the characteristics of selected articles and reviewed the neural substrates of CR. Total thirty-four studies were included in this study. As surrogate markers of CR, not only education and occupational complexity, but also composite score and questionnaire-based method, which cover various areas of life, were mainly used. The most utilized methods in resting-state fMRI were independent component analysis, seed-based analysis, and graph theory analysis. Through the analysis, we demonstrated that neuroimaging techniques could capture the neural substrates associated with cognitive reserve. Moreover, functional connectivity of brain regions centered on prefrontal and parietal cortex and network areas such as default mode network showed a significant correlation with CR, which indicated a significant association with cognitive performance. CR may induce differential effects according to the disease status. We hope that this perspective on cognitive reserve would be helpful when conducting clinical researches on the mechanisms of traditional Korean medicine for Alzheimer's disease in the future.

Alterations of Cortical Folding Patterns in Patients with Bipolar I Disorder : Analysis of Local Gyrification Index (제1형 양극성장애 환자에서 대뇌피질 주름 패턴의 변형 : Local Gyrification Index 분석)

  • Lee, Junyong;Han, Kyu-Man;Won, Eunsoo;Lee, Min-Soo;Ham, Byung-Joo
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.4
    • /
    • pp.225-234
    • /
    • 2017
  • Objectives Local gyrification reflects the early neural development of cortical connectivity, and is regarded as a potential neural endophenotype in psychiatric disorders. Several studies have suggested altered local gyrification in patients with bipolar I disorder (BD-I). The purpose of the present study was to investigate the alterations in the cortical gyrification of whole brain cortices in patients with BD-I. Methods Twenty-two patients with BD-I and age and sex-matched 22 healthy controls (HC) were included in this study. All participants underwent T1-weighted structural magnetic resonance imaging (MRI). The local gyrification index (LGI) of 66 cortical regions were analyzed using the FreeSurfer (Athinoula A. Martinos Center for Biomedical Imaging). One-way analysis of covariance (ANCOVA) was used to analyze the difference of LGI values between two groups adjusting for age and sex as covariates. Results The patients with BD-I showed significant hypogyria in the left pars opercularis (uncorrected-p = 0.049), the left rostral anterior cingulate gyrus (uncorrected-p = 0.012), the left caudal anterior cingulate gyrus (uncorrected-p = 0.033). However, these findings were not significant after applying the multiple comparison correction. Severity or duration of illness were not significantly correlated with LGI in the patients with BD-I. Conclusions Our results of lower LGI in the anterior cingulate cortex and the ventrolateral prefrontal cortex in the BD-I group implicate that altered cortical gyrification in neural circuits involved in emotion-processing may contribute to pathophysiology of BD-I.

Interactivity of Neural Representations for Perceiving Shared Social Memory

  • Ahn, Jeesung;Kim, Hye-young;Park, Jonghyun;Han, Sanghoon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.29-48
    • /
    • 2018
  • Although the concept of "common sense" is often taken for granted, judging whether behavior or knowledge is common sense requires a complex series of mental processes. Additionally, different perceptions of common sense can lead to social conflicts. Thus, it is important to understand how we perceive common sense and make relevant judgments. The present study investigated the dynamics of neural representations underlying judgments of what common sense is. During functional magnetic resonance imaging, participants indicated the extent to which they thought that a given sentence corresponded to common sense under the given perspective. We incorporated two different decision contexts involving different cultural perspectives to account for social variability of the judgments, an important feature of common sense judgments apart from logical true/false judgments. Our findings demonstrated that common sense versus non-common sense perceptions involve the amygdala and a brain network for episodic memory recollection, including the hippocampus, angular gyrus, posterior cingulate cortex, and ventromedial prefrontal cortex, suggesting integrated affective, mnemonic, and social functioning in common sense processing. Furthermore, functional connectivity multivariate pattern analysis revealed that interactivity among the amygdala, angular gyrus, and parahippocampal cortex reflected representational features of common sense perception and not those of non-common sense perception. Our study demonstrated that the social memory network is exclusively involved in processing common sense and not non-common sense. These results suggest that intergroup exclusion and misunderstanding can be reduced by experiencing and encoding long-term social memories about behavioral norms and knowledge that act as common sense of the outgroup.

Development of an EEG Based Discriminant-Scale for Scientifically Gifted Students in Elementary School (초등학교 과학 영재아의 뇌파 기반 변별 척도 개발)

  • Kwon, Suk-Won;Kang, Min-Jung;Shin, Dong-Hoon;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.spc5
    • /
    • pp.556-566
    • /
    • 2007
  • The purpose of this study was to develop an electroencephalogram (EEG) based differential-scale for scientifically gifted students in elementary school. For this study, signals of EEG with 19 channels were recorded during the generation of our scientific hypothesis using 22 scientifically gifted students, and with 49 average students being used as the control group. IQ, TCT and knowledge generation (KG) as constructs of the scientifically gifted were administered for both the scientifically gifted and the normal, control group elementary students. A 'gifted' value was added to paper test scores of the IQ, TCT, and KG constructs in order to make a personal standardization score for the gifted students. As a dependent variable, the groups were divided by means of the standardization scores thus produced and as an autonomous variable, various EEG parameters were presented through linear analysis, nonlinear analysis, and interdependency measures of the EEG. Multiple linear regression analysis was applied successfully to explain the EEG parameters and to show the characteristics of the scientifically-gifted. The discrimination analysis was administered through the results of multiple linear regression of the EEG parameters thus produced. This study represents the foundation of the development of an EEG based discriminant-scale for scientifically gifted students in elementary school, because it will be able to faithfully discriminate between scientifically-gifted and average students. The results of this study indicates that most of the EEG parameters produced can contribute to predicting the characteristics of the scientifically-gifted in that they express the degree of mutual information and the coherence of mutuality. Accordingly, mutual connectivity which appears to originate in the brain seems to the core of discrimination.

  • PDF

Frontal Gamma-band Hypersynchronization in Response to Negative Emotion Elicited by Films (영상에 의해 유발된 부정적 감정 상태에 따른 전두엽 감마대역 신경동기화)

  • Kim, Hyun;Choi, Jongdoo;Choi, Jeong Woo;Yeo, Donghoon;Seo, Pukyeong;Her, Seongjin;Kim, Kyung Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.124-133
    • /
    • 2018
  • We tried to investigate the changes in cortical activities according to emotional valence states during watching video clips. We examined the neural basis of two emotional states (positive and negative) using spectral power analysis and brain functional connectivity analysis of cortical current density time-series reconstructed from high-density electroencephalograms (EEGs). Fifteen healthy participants viewed a series of thirty-two 2 min emotional video clips. Sixty-four channel EEGs were recorded. Distributed cortical sources were reconstructed using weighted minimum norm estimation. The temporal and spatial characteristics of spectral source powers showing significant differences between positive and negative emotion were examined. Also, correlations between gamma-band activities and affective valence ratings were determined. We observed the changes of cortical current density time-series according to emotional states modulated by video clip. Gamma-band activities showed significant difference between emotional states for thirty seconds at the middle and the latter half of the video clip, mainly in prefrontal area. It was also significantly anti-correlated with the self-ratings of emotional valence. In addition, the gamma-band activities in frontal and temporal areas were strongly phase-synchronized, more strongly for negative emotional states. Cortical activities in frontal and temporal areas showed high spectral power and inter-regional phase synchronization in gamma-band during negative emotional states. It is inferred that the higher amygdala activation induced by negative stimuli resulted in strong emotional effects and caused strong local and global synchronization of neural activities in gamma-band in frontal and temporal areas.

Changes of Regional Homogeneity and Amplitude of Low Frequency Fluctuation on Resting-State Induced by Acupuncture (침자극에 의한 안정성 네트워크 변화를 관찰하기 위한 Regional Homogeneity와 Amplitude of Low Frequency Fluctuation의 변화 비교: fMRI연구)

  • Yeo, Sujung
    • Korean Journal of Acupuncture
    • /
    • v.30 no.3
    • /
    • pp.161-170
    • /
    • 2013
  • Objectives : Our study aimed to investigate the sustained effects of sham (SHAM) and verum acupuncture (ACUP) into the post-stimulus resting state. Methods : In contrast to previous studies, in order to define the changes in resting state induced by acupuncture, changes were evaluated with a multi-method approach by using regional homogeneity (ReHo) and amplitude of low frequency fluctuation (ALFF). Twelve healthy participants received SHAM and ACUP stimulation right GB34 (Yanglingquan) and the neural changes between post- and pre-stimulation were detected. Results : The following results were found; in both ReHo and ALFF, the significant foci of; left and right middle frontal gyrus, left medial frontal gyrus, left superior frontal gyrus, and right posterior cingulate cortex, areas that are known as a default mode network, showed increased connectivity. In addition, in ReHo, but not in ALFF, brain activation changes in the insula, anterior cingulate cortex, and the thalamus, which are associated with acupuncture pain modulation, were found. Conclusions : In this study, results obtained by using ReHo and ALFF, showed that acupuncture can modulate the post-stimulus resting state and that ReHo, but not ALFF, can also detect the neural changes that were induced by the acupuncture stimulations. Although more future studies with ReHo and ALFF will be needed before any firm conclusions can be drawn, our study shows that particularly ReHo could be an interesting method for future clinical neuroimaging studies on acupuncture.

3-Dimensional Reconstruction of Parallel fiber-Purkinje Cell Synapses Using High-Voltage Electron Microscopy (고압전자현미경을 이용한 소뇌 평행섬유-조롱박세포간 신경연접의 3차원 재구성)

  • Lee, Kea-Joo;Kweon, Hee-Seok;Kang, Ji-Seoun;Rhyu, Im-Joo
    • Applied Microscopy
    • /
    • v.35 no.1
    • /
    • pp.31-39
    • /
    • 2005
  • Synapses are contact points where one neuron communicates with another. The morphological change of synapses under various physiological or pathological conditions has long been hypothesized to modify their functional properties. 3-dimensional (3-D) reconstruction of synapses with serial ultrathin sections has contributed to the understanding of ultrastructural dimensions and compositions of synapses. The 3-D reconstruction procedures, however, require a great amount of expertise as well as include prohibitively timeconsuming processes. Here, we introduce efficient 3-D reconstruction technique using high-voltage electron microscopy (HVEM). Primarily, we established an optimal section thickness and staining condition to observe synaptic structures in detail under HVEM. The result showed that synaptic profiles were preserved at the section thickness of 250 nm without the overlapping of synaptic ultrastructures. An increase in the reaction time of en bloc staining was most efficient to enhance contrast than the extension of postembedding staining or the addition of uranyl acetate during dehydration. Then, 3-D reconstruction of parallel fiber-Purkinje cell synapses in the rat cerebellum was carried out with serial HVEM images and reconstruction software. The images were aligned and the contours of synapses were outlined on each section. 3-D synapses were finally extracted from the section files by grouping all the synaptic contours. The reconstructed synapse model clearly demonstrated the configuration of pre and postsynaptic components. These results suggest that 3-D reconstruction of synapses using HVEM is much efficient and suitable for massive quantitative studies on synaptic connectivity than conventional TEM approach using numerous ultrathin sections.