• Title/Summary/Keyword: brain activity

Search Result 1,652, Processing Time 0.026 seconds

MR imaging of cortical activation by painful peripheral stimulation in rats (쥐에서 말초 자극에 따른 뇌피질 활성화의 자기공명 영상)

  • Lee, Bae-Hwan;Cha, Myeoung-Hoon;Cheong, Chae-Joon;Lee, Kyu-Hong;Lee, Chul-Hyun;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.183-185
    • /
    • 2009
  • As imaging technology develops, magnetic resonance imaging (MRI) techniques have contributed to the understanding of brain function by providing anatomical structure of the brain and functional imaging related to information processing. Manganese-enhanced MRI (MEMRI) techniques can provide useful information about functions of the nervous system. However, systematic studies regarding information processing of pain have not been conducted. The purpose of this study was to detect brain activation during painful electrical stimulation using MEMRI with high spatial resolution. Male Sprague-Dawley rats (250-300 g) were divided into 3 groups: normal control, sham stimulation, and electric stimulation. Rats were anesthetized with 2.5% isoflurane for surgery. Polyethylene catheter (PE-10) was placed in the external carotid artery to administrate mannitol and MnCl2. The blood brain barrier (BBB) was broken by 20% D-mannitol under anesthesia mixed with urethane and a-chloralose. The hind limb was electrically stimulated with a 2Hz (10V) frequency while MnCl2 was infused. Brain activation induced by electrical stimulation was detected using a 4.7 T MRI. Remarkable signal enhancement was observed in the primary sensory that corresponds to sensory tactile stimulation at the hind limb region. These results suggest that signal enhancement is related to functional activation following electrical stimulation of the peripheral receptive field.

  • PDF

A fMRI study on the cerebral activity induced by Electro-acupuncture on Taichong(Liv3) (태충(太衝)(Liv3)의 전침자극(電鍼刺戟)이 fMRI상 뇌활성(腦活性) 변화(變化)에 미치는 영향(影響))

  • Ha, Chi-hong;Lee, Hyun;Lim, Yun-kyoung;Hong, Kwon-eui;Lee, Byung-ryul;Kim, Yeon-jin
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.187-207
    • /
    • 2003
  • Objective: Recently, many studies have showed the evidences of the effect of the acupuncture treatment through scientific methods. One of these methods is functional MRI. We performed electro-acupuncture on Liv3 and observed the change of brain activation using fMRI. Methods: To see the effect of electro-acupuncture stimulation on Liv3. the experiment was carried out on 12 healthy volunteers. using the gradient echo sequence with the 3.0T whole-body MRI system(ISOL). After the needle insertion on right Liv3. 2 Hz of electric stimulation was given for 30 seconds. repeated five times. with 30 seconds' intervals. The Image analysis including motion correction, talairach transformation. and smoothing was done with SPM99. Results : 1. Group averaged brain activation induced by bilateral electro-acupuncture stimulation on Liv3 activates Brodman Area 6, 13, 18, 19, 22, 31, 39, 44, 2. Group averaged brain deactivation induced by bilateral Electro-acupuncture stimulation on Liv3 activates Brodman Area 4, 6, 9, 19, 36, 37, 39. 3. Group averaged brain activation induced by unilateral(right side) electro-acupuncture stimulation on Liv3 activates Brodman Area 2, 3, 6, 9, 10, 22, 40, 42, 43. 4. Group averaged brain deactivation induced by unilateral(right side) electro-acupuncture stimulation on Liv3 activates Brodman Area 6, 18, 19, 28, 30, 31, 35, 37. 5. Brain region activated by motor stimulation activates Brodman Area 4, 6, 13, 19, 42.

  • PDF

A Development of Remote Medical Treatment System for Stroke Recovery using ZigBee-based Wireless Brain Stimulator and Internet (ZigBee 기반의 무선 뇌 자극기와 네트워크를 이용한 원격 뇌졸중 회복 시스템의 개발)

  • Kim, G.H.;Ryu, M.H.;Kim, J.J.;Kim, N.G.;Yang, Y.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.514-517
    • /
    • 2008
  • Ubiquitous healthcare (U-healthcare) system is one of potential applications of embedded system. Conventional U-healthcare systems are used in health monitoring or chronic disease care based on measuring and transmission of various vital signs. However, future U-healthcare system can be of benefit to more people such as stroke patients which have limited activity by providing them proper medical care as well as continuous monitoring. Recently, an electric brain stimulation treatments have been found to be a better way compared to conventional ones and many are interested in using the method toward the treatment of stroke. In this study, we proposed a remote medical treatment system using ZigBee-based wireless electric brain stimulator that can help them to get a treatment without visiting their doctors. The developed remote medical treatment system connects the doctors to the brain stimulator implanted in the patients via the internet and ZigBee communication built in the brain stimulator. Also, the system receive personal information of the connected patients and cumulate the total records of electric stimulation therapy in a database. Doctors can easily access the information for better treatment planning with the help of graphical visualization tools and management software. The developed remote medical treatment system can extend their coverage to outdoors being networked with hand-held devices through ZigBee.

Near-infrared Spectroscopy and an Example of HAM Study;Brain Activation in the Development of Drawing Skills

  • Kobayashi, Harumi;Yasuda, Tetsuya;Suzuki, Satoshi;Takase, Hiroki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1745-1748
    • /
    • 2005
  • Near-infrared spectroscopy (NIRS) can be used to monitor brain activation by measuring changes in the concentration of oxy- and deoxy-hemoglobin (Hb) by their different spectra in the near-infrared range. Because NIRS is a noninvasive, highly flexible and portable device, it is very suitable to study brain activation when a human repeatedly performs a manipulative task, and possibly provides useful information to construct human adaptive mechatronics (HAM). There is some evidence that the dorsolateral prefrontal cortex (DLPFC) plays a major role in working memory and it is proposed that the use of working memory decreases as a human develops manipulative skills. In the present study, we investigated the activation of the dorsolateral prefrontal cortex (DLPFC) of the brain in Brodmann's areas 9 and 46 in drawing tasks to examine whether NIRS can measure the changes of DLPFC activation as a human develops manipulative skills. Subjects performed a mirror image drawing task and a square drawing task by ones' left hands. In the mirror image task the subject drew following a star shape based on a mirror image of it, but square drawing did not involve mirror image and was estimated to be simpler. The changes of the concentration of oxy-Hb was higher in the mirror image drawing than the square drawing in most subjects. The changes of oxy-Hb decreased as the subject repeated the drawing task in most subjects. In conclusion, The activation of DLPFC measured by NIRS can reflect the brain activity in the development of manipulative skills.

  • PDF

Analyses of Elementary School Students' Interests and Achievements in Science Outdoor Learning by a Brain-Based Evolutionary Approach (뇌기반 진화적 접근법에 따른 과학 야외학습이 초등학생들의 흥미와 성취도에 미치는 영향)

  • Park, Hyoung-Min;Kim, Jae-Young;Lim, Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.2
    • /
    • pp.252-263
    • /
    • 2015
  • This study analyzed the effects of science outdoor activity applying a Brain-Based Evolutionary (ABC-DEF) approach on elementary school students' interest and academic achievement. Samples of the study were composed of 3 classes of 67 sixth graders in Seoul, Korea. Unit of 'Ecosystem and Environment' was selected as a object of the research. Textbook- and teachers' guidebook-based instruction was implemented in comparison group, brain-based evolutionary approach within classroom in experimental group A, and science outdoor learning by a brain-based evolutionary approach in experimental group B. In order to analyze the quantitative differences of students' interests and achievements, three tests of 'General Science Attitudes', 'Applied Unit-Related Interests', and 'Applied Unit-Related Achievement' were administered to the students. To find out the characteristics which would not be apparently revealed by quantitative tests, qualitative data such as portfolios, daily records of classroom work, and interview were also analyzed. The major results of the study are as follows. First, for post-test of interest, a statistically significant difference between comparison group and experimental group B was found. Especially, the 'interests about biology learning' factor, when analyzed by each item, was significant in two questions. Results of interviews the students showed that whether the presence or absence of outdoor learning experience influenced most on their interests about the topic. Second, for post-test of achievement, the difference among 3 groups according to high, middle, and low levels of post-interest was not statistically significant, but the groups of higher scores in post-interest tends to have higher scores in post-achievement. It can be inferred that outdoor learning by a brain-based evolutionary approach increases students' situational interests about leaning topic. On the basis of the results, the implications for the research in science education and the teaching and learning in school are discussed.

Review of Magnetocardiography Technology based on SQUIDs (SQUID를 이용한 심자도 기술의 개발동향)

  • Lee, Y.H.;Kwon, H.;Kim, J.M.;Kim, K.;Yu, K.K.;Park, Y.K.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.139-145
    • /
    • 2012
  • Electric activity of cardiac muscles generates magnetic fields. Magnetocardiography (or MCG) technology, measuring these magnetic signals, can provide useful information for the diagnosis of heart diseases. It is already about 40 years ago that the first measurement of MCG signals was done by D. Cohen using SQUID (superconducting quantum interference device) sensor inside a magnetically shielded room. In the early period of MCG history, bulky point-contact RF-SQUID was used as the magnetic sensor. Thanks to the development of Nb-based Josephson junction technology in mid 1980s and new design of tightly-coupled DC-SQUID, low-noise SQUID sensors could be developed in late 1980s. In around 1990, several groups developed multi-channel MCG systems and started clinical study. However, it is quite recent years that the true usefulness of MCG was verified in clinical practice, for example, in the diagnosis of coronary artery disease. For the practical MCG system, technical elements of MCG system should be optimized in terms of performance, fabrication cost and operation cost. In this review, development history, technical issue, and future development direction of MCG technology are described.

The Study of Brain Function Changes After Contralateral and Ipsilateral Application Of Electroacupuncture (동측 및 대측 전침자극 전후의 뇌기능 변화에 관한 연구)

  • Woo, Young-min;Shin, Byung-cheul;Nam, Young
    • Journal of Acupuncture Research
    • /
    • v.20 no.1
    • /
    • pp.22-34
    • /
    • 2003
  • Objective : To ascertain whether the concept of the treatment side is associated with changes in the blind spot mapping that represents the brain function. Methods : Among the outpatients who visited to Department of Acupuncture & Moxibustion, National Medical Center from March 2002 to October 2002, we selected 40 clinical trial volunteers that showed right side physiological blind spot more enlarged than left, and underwent the examinations of Department of Opthalmology, National Medical Center for ruling out the pathological conditions. Physiological blind spot maps were used as an integer of brain activity before and after electroacupuncture application on the unilateral ST36 meridian point by dividing 40 subjects into two comparative groups for double-blind controlled study. Results: The significant changes in the blind spots were observed. Electroacupuncture application on the ipsilateral or contralateral ST36 of an enlargement cortical map were associated with the concept of determining the treatment side. In the case of electroacupuncture application on the ipsilateral side of an enlarged blind spot, there were decrease of $4.11{\pm}8.56cm$(17.3%) in blind spot perimetry length(p < 0.05). In the case of contralateral side, there were increase of $3.19{\pm}5.40cm$(13.7%) in blind spot perimetry length(p<0.05). The Differences were statistically significant(p<0.05). Conclusions: We found that eletroacupuncture application was associated with an increase or decrease in the brain function in the view of blind spot changes depending on the treatment side. These results suggest that the traditional acupuncture therapeutic strategy with determining the treatment side has clinical significance in the view of the brain function.

  • PDF

fMRI study on the cerebral activity induced by Electro-acupuncture on Sanyinjiao(Sp6) (삼음교(三陰交)(Sp6) 전침자극(電針刺戟)이 fMRI상 뇌활성변화(腦活性變化)에 미치는 영향(影響))

  • Hong, Kwon-eui;Lee, Byung-ryul;Lee, Hyun;Yim, Yun-kyoung;Kim, Yun-jin
    • Journal of Acupuncture Research
    • /
    • v.20 no.3
    • /
    • pp.86-103
    • /
    • 2003
  • Objective : Recently, many studies have showed the evidences of the effect of the acupunture treatment through scientific methods. One of these methods is functional MRI. We performed electro-acupunture on Sp6 and observed the changes of brain activation using fMRI. Methods : To see the effect of electro-acupunture stimulation on Sp6, the experiment was carried out on 12 healthy volunteers, using the gradient echo sequence with the 3.0T whole-body MRI system(ISOL). After the needle insertion on right Sp6, 2Hz of electric stimulation was given for 30 seconds, repeated five times, with 30 seconds' intervals. The Image analysis including motion correction, talairach transformation, and smoothing was done with SPM99. Results : 1. Group averaged brain activation induced by bilateral eletro-acupunture stimulation on Sp6 activates Brodman Area 3, 7, 13. 2. Group averaged brain deactivation induced by bilateral eletro-acupunture stimulation on Sp6 activates Brodman Area 6, 38, 47. 3. Group averaged brain activation induced by unilateral(right side) eletro-acupunture stimulation on Sp6 activates Brodman Area 5, 6, 13, 17, 18, 19, 31, 38, 40 ptoms, back pain(32.5%) was the 4. Group averaged brain deactivation induced by unilateral(right side) eletro-acupunture stimulation on Sp6 activates Brodman Area 3, 4, 18, 21, 36, 38, 39. 5. Brain region activated by motor stimulation activates Brodman Area 3, 4, 6, 18, 19.

  • PDF

Effects of Silk Fibroin Powder on Lipofuscin, Acetylcholine and Its Related Enzyme Activities in Brain of SD Rats (뇌조직의 리포푸신, 아세틸콜린 및 그 관련효소 활성에 미치는 실크 피브로인의 영향)

  • 최진호;김대익;박수현;김동우;이광길;여주홍;김정민;이용우
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.2
    • /
    • pp.120-125
    • /
    • 2000
  • This study was designed to investigate the effects of silk fibroin (Mw 500) powder (SFP) on lipofuscin, acetylcholine (ACh) and its related enzyme activities in brain of rats. Sprague-Dawley (SD) male rats (160$\pm$10 g) were fed basic diet (control group), and experimental diets (SFP-2.5 and SFp-5.0 groups) added 2.5 and 5.0 g/kg BW/day for 6 weeks. In case of liver membranes, lipofuscin (LF) levels resulted in a considerable decreases (11.5% and 13.8%, respectively) in SFP-2.5 and SFP-5.0 groups compared with control group. But in case of brain as the most sensitive organ, LF levels were remarkably inhibited about 18.3% and 21.7% in SFP-2.5 and SFP-5.0 groups compared with control group. Acetylcholine (ACh) levels were considerable decrease (3.0% and 9.2%, respectively) in brain membranes of SFP-2.5 and SFP-5.0 groups compared with control group. choine acetyltranferase (ChAT) activities as a synthesis enzyme of ACh, and acetylcholinesterase (AChE) activities as a hydrolysis enzyme resulted in a slight increases (2.4% and 3.0%, 4.6% and 6.3%, respectively), but significance difference between ChAT and AChE activities by SFP administration could be not obtained. Monoamine oxidase-B (MAO-B) activities were significantly inhibited (9.5% and 12.6%, respectively) in brain of SEP-2.5 and SFP-5.0 groups compared with control group. These results suggest that inhibiting effects of LF accumulation and MAO-B activity of silk fibroin(SFP) may play a pivotal role in protecting learning memory impairments by attenuating a various age-related changes for improvement of brain function.

  • PDF

Immunohistochemical localization of PLC in rat brain after chronic ECS

  • Hey suk Ihm;You, Je-Kyung;Ryu, Jae-Ryun;Shin, Chan-Young;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.197-197
    • /
    • 1998
  • Chronic electroconvulsive shock(ECS) was shown to Increase phosphatidylinositol-4,5-bisphosphate(PIP$_2$) breakdown and the activity of PLC with the accumulation of inositol-1,4,5-triphosphate(IP3). The purpose of the present study was to determine the effect of ECS on the expression of phospholipase C(PLC) isotypes in rat brain. Two groups of animals were prepared: sham and ECS treated groups. Rats in ECS treated groups received maximal ECS(70mA, 0.5second, 60㎐) by constant current stimulator through ear-clip to induce tonic extension seizures for 12 consecutive days. The expression of PLC isotypes in rat brain was determined by immunohistochemical procedure using sagital section of rat brain. The immunoreactivity of PLC${\beta}$1 was observed in corpus striatum, hippocampus, thalamus and that of PLC${\gamma}$1 in corpus striatum, hippocampus, thalamus, frontal cortex, parietooccipital cortex, limbic forebrain, pons, medulla, superior colliculus, inferior colliculus, rest of midbrain. The amount of PLC was analyzed by Western blot using antibodies against PLC${\beta}$1 and PLC${\gamma}$1. Chronic ECS reduced the immunoreactivity of PLC${\beta}$1 in corpus striatum, hippocampus, thalamus but had little effect on PLC${\gamma}$1. To quantify this change, quantitative Western blot using antibodies against PLC${\beta}$1 and PLC${\gamma}$1 was conducted. The immunoreactivity of PLC${\beta}$1 in ECS treated rat whole brain was decreased by 40 % in cytosolic fraction and 26 % in membrane fraction. This different effect of ECS on PLC isotypes may results from the difference of their activation mechanisms and the different effects of ECS on them. The results from the present study suggest that chronic ECS primalily affects neurotransmitter receptors related IP$_3$ signaling in rat brain.

  • PDF