• Title/Summary/Keyword: brain activity

Search Result 1,655, Processing Time 0.026 seconds

Outcomes and physiologic responses associated with ketamine administration after traumatic brain injury in the United States and Canada: a retrospective analysis

  • Austin J. Peters;Saad A. Khan;Seiji Koike;Susan Rowell;Martin Schreiber
    • Journal of Trauma and Injury
    • /
    • v.36 no.4
    • /
    • pp.354-361
    • /
    • 2023
  • Purpose: Ketamine has historically been contraindicated in traumatic brain injury (TBI) due to concern for raising intracranial pressure. However, it is increasingly being used in TBI due to the favorable respiratory and hemodynamic properties. To date, no studies have evaluated whether ketamine administered in subjects with TBI is associated with patient survival or disability. Methods: We performed a retrospective analysis of data from the multicenter Prehospital Tranexamic Acid Use for Traumatic Brain Injury trial, comparing ketamine-exposed and ketamine-unexposed TBI subjects to determine whether an association exists between ketamine administration and mortality, as well as secondary outcome measures. Results: We analyzed 841 eligible subjects from the original study, of which 131 (15.5%) received ketamine. Ketamine-exposed subjects were younger (37.3±16.9 years vs. 42.0±18.6 years, P=0.037), had a worse initial Glasgow Coma Scale score (7±3 vs. 8±4, P=0.003), and were more likely to be intubated than ketamine-unexposed subjects (88.5% vs. 44.2%, P<0.001). Overall, there was no difference in mortality (12.2% vs. 15.5%, P=0.391) or disability measures between groups. Ketamine-exposed subjects had significantly fewer instances of elevated intracranial pressure (ICP) compared to ketamine-unexposed subjects (56.3% vs. 82.3%, P=0.048). In the very rare outcomes of cardiac events and seizure activity, seizure activity was statistically more likely in ketamine-exposed subjects (3.1% vs. 1.0%, P=0.010). In the intracranial hemorrhage subgroup, cardiac events were more likely in ketamine-exposed subjects (2.3% vs. 0.2%, P=0.025). Ketamine exposure was associated with a smaller increase in TBI protein biomarker concentrations. Conclusions: Ketamine administration was not associated with worse survival or disability despite being administered to more severely injured subjects. Ketamine exposure was associated with reduced elevations of ICP, more instances of seizure activity, and lower concentrations of TBI protein biomarkers.

Total Activity Estimation of Hippocampal Slice Using Multi-Electrode Array (Multi-Electrode Array를 이용한 뇌 해마의 Total Activity 추산)

  • Lee, Jeong-Chan;Kim, Ji-Eun;Cho, Chung-Yearn;Son, Min-Sook;Park, Kyung-Mo;Park, Ji-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.409-417
    • /
    • 2006
  • Research on neural circuit is a difficult area due to complexity and inaccessibility. Due to recent developments, the research using multi-electrode array of cells or tissues has become an important research area. However, there are some difficulties to decode the submerged meaning from huge and complex neural data. Moreover, it needs a harmonic collaboration between informatics and bioscience. In this paper, we have developed a custom-designed signal processing technique for multi-electrode array measured neural responses induced by electrical stimuli to the hippocampal tissue slices of the rat brain. The raw data from hippocampal slice using the multi-electrode array system were saved in a computer. Then we estimated characteristic points in each channel and calculated the total activity. To estimate the points, we used the Polynomial Fitting Approximation Method. Using the calculated total activity, we could provide the histogram or pseudo-image matrix to help interpretation of results.

Studies about Monoamine Oxidase Inhibitory Activities of Korean Green Tea (Teae sinensis L.) Harvested from Different Time and Location

  • Choi, You Jin;Chong, Han-Soo;Kim, Young-Kyoon;Hwang, Keum Hee
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.281-285
    • /
    • 2013
  • This study was designed to investigate the nervous sedative effects of green tea. The sedative effect was evaluated by examination of Monoamine oxidases (MAOs) inhibitory activity in vitro in the brain and liver of rat fed on green tea cultivated and harvested from the different regions and periods. It showed that methanol extracts of green tea inhibited significantly the brain MAO-A activity. Especially late harvested green tea extracts showed potential inhibitory activity. The liver MAO-B activity was also inhibited by all of the green tea extracts with strong intensity. This study confirmed that major compounds of green tea such as catechin, epigallocatechin-3-gallate (EGCG) and L-theanine, which were well known for the main bioactive components in the tea plants, were not associated with the MAO inhibitory activities of green tea. These results suggested that a MAO inhibition activity comes from other minor tea components we have to search in the future.

Factors Related to Outcomes of Subthalamic Deep Brain Stimulation in Parkinson's Disease

  • Kim, Hae Yu;Chang, Won Seok;Kang, Dong Wan;Sohn, Young Ho;Lee, Myung Sik;Chang, Jin Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.2
    • /
    • pp.118-124
    • /
    • 2013
  • Objective : Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective treatment of choice for patients with advanced idiopathic Parkinson's disease (PD) who have motor complication with medication. The objectives of this study are to analyze long-term follow-up data of STN DBS cases and to identify the factors related to outcomes. Methods : Fifty-two PD patients who underwent STN DBS were followed-up for more than 3 years. The Unified Parkinson's Disease Rating Scale (UPDRS) and other clinical profiles were assessed preoperatively and during follow-up. A linear regression model was used to analyze whether factors predict the results of STN DBS. We divided the study individuals into subgroups according to several factors and compared subgroups. Results : Preoperative activity of daily living (ADL) and the magnitude of preoperative levodopa response were shown to predict the improvement in UPDRS part II without medication, and preoperative ADL and levodopa equivalent dose (LED) were shown to predict the improvement in UPDRS part II with medication. In UPDRS part III with medication, the magnitude of preoperative levodopa response was a predicting factor. Conclusion : The intensity of preoperative levodopa response was a strong factor for motor outcome. And preoperative ADL and LED were strong factors for ADL improvement. More vigorous studies should be conducted to elucidate how levodopa-induced motor complications are ameliorated after STN DBS.

Studies on the $K^+-dependent$ p-Nitrophenylphosphatase activity of the rat brain (백서 뇌 $K^+-dependent$ p-Nitrophenylphosphatase활성에 관한 연구)

  • Koo, Jin-Il
    • The Korean Journal of Physiology
    • /
    • v.8 no.2
    • /
    • pp.59-66
    • /
    • 1974
  • In recent years much interesting information about the mechanism of the $Na^+-K^+$ activated ATPase has been obtained from investigation of the $K^+-activated$ phosphatase activity which appears to be catalysed by the same enzyme. Also several studies have indicated that a $K^+-activated p-nitrophenylphosphatase activity is intimately related to the ATPase activity. And then the exact relation of p-nitrophenylphosphatase activity to $Na^+-K^+$ ATPase activity is not known. The effects of some ions and drugs on the p-nitrophenylphosphatase activity of the rat brain were investigated and the results were summarized as follows. 1. The p-nitrophenylphosphatase was stimulated markedly by low concentrations of $K^+$, while the activity was activated slightly in the presence of $Na^+$ and oligomycin. 2. Addition of both ATP and $Na^+$ caused a remarkable increase in the activity of the $K^+-dependent$ phosphatase at low concentrations of $K^+$. 3. In the presence of $Na^+$ and low concentrations of $K^+$, oligomycin activated the p-nitrophenylphosphatase. 4. O1igomycin inhibited the stimulation of the enzyme activity caused by $Na^{+}+ATP$. 5. Ouabain inhibited the $K^+-dependent$ p-nitrophenylphosphatase activity more in the presence of ATP and $Na^+$ than in their absence. 6. Quinidine inhibited both $Na^+-K^+$ ATPase and p-nitrophenylphosphatase. These inhibitory effects of the drug were partially antagonized by increasing $K^+$ concentrations. The sensitivity of the $K^+-dependent$ p-nitrophenylphosphatase to quinidine was greater than the that of $Na^+-K^+$ ATPase.

  • PDF

The Effect oi Saponin Fraction of Panax Ginsen C.A. Meyer on Aldehyde Dehydrogenase Activity in Neurons and Astrocytes Isolated from Ethanol Administered Rat Brain (인삼사포닌 분획이 에탄올을 투여한 쥐의 뇌에서 분리한 신경세포와 Astrocyte의 Aldehyde Dehydrogenase 활성에 미치는 영향)

  • Lee, Myeong-Don;Hwang, U-Seop;Seo, Hae-Yeong
    • Journal of Ginseng Research
    • /
    • v.21 no.1
    • /
    • pp.53-60
    • /
    • 1997
  • The changes in aldehyde dehydrogenase(ALDH, E.C. 1.2.1.3.) activity in neurons and astrocytes isolated from rat brains were investigated after administration of ethanol and Korean red ginseng(Panax ginseng C.A. Meyer) saponln. The cerebral ALDH activity with acetaldehyde and Propionaldehyde was higher in the white matter than in the gray matter. However, using indole-3-a-cetaldehyde and 3,4-dihydroxyphenylacetaldehyde as substrates, there was no significant difference in activity between two regions in cerebrum. In ethanol treated group, ALDH activity with all the substrates in the gray and white matter was lower than in normal group. In ethanol-saponin treated group, the enzyme activity in the white matter remarkably Increased. The ALDH activity in neurons isolated from cerebral cortex in ethanol-treated group was lower than in normal group. In ethanol-saponin treated group, neuronal ALDH activity with propionaldehyde was significantly recovered but not with Indole-3-acetaldehyde. In astrocytes, although the ALDH activity with propionaldehyde in the ethanol-treated group was not changed as compared with normal group, considerable increase in activity was found in ethanol-saponin treated group. These results suggest that Korean red ginseng saponin may protect the neuronal functions from the toxic effects of acetaldehyde derived from ethanol by stimulation of ALDH activity in astrocytes surrounding nerve cells.

  • PDF

Studies on the Chromatin Isolated from the Organs of Animals Received Whole-body X-ray Irradiation (백서장기(白鼠臟器)에서의 Chromatin의 분리(分離)와 그 RNA 합성능(合成能)에 미치는 X-선전신조사(線全身照射)의 영향(影響)에 관(關)한 연구(硏究))

  • Han, Su-Nam
    • The Korean Journal of Nuclear Medicine
    • /
    • v.1 no.2
    • /
    • pp.27-34
    • /
    • 1967
  • 1. Within experimental chromatin, the total protein: DNA ratio did not vary in the same organs of control and irradiated rats. However, the amount of RNA and total protein associated with the DNA varied considerably among the different types of chromatin. In particular, the content of chromatin was the highest in the irradiated tissue, and the lowest in the chromatin control tissue. RNA and total protein ratio of chromatins from brain, liver, testis and spleen declined with experimental organs. 2. There was the same quantitative relationship between the amount of RNA and the amount histone-protein associated with DNA in each chromatin. 3. RNA:DNA ratio of chromatin showed a $1.5{\sim}2$ times increase in the irradiated organs except brain. However, RNA:DNA ratio was decreased in chromatin by irradiation. 4. Histone-protein:Residual protein ratio was greatly varied among the organs. However, the effect was not found by irradiation. 5. Priming activity of chromatins showed a higher value in testis and the activity was greater in organs with higher metabolic activity. 6. Inhibition of Actinomycin D observable in chromatin for testis, liver, spleen and brain declined without relationship between irradiated and non-irradiated conditions. Ammonium sulfate in DNA of chromatin from histone showed increased priming activity with dissociation by Electrostatics. It may give different effect of ammonium sulfate on stimulation by property of chromatins. 7. It is suggested that the results support a proposal that the higher sensitivity of radioactive in testis, spleen by irradiated showed a increase and decrease lower-sensitivity of radioactive from brain, liver than did priming activity under the radioactive conditions.

  • PDF

Screening of the Biologoical Activity from Water Extracts of the Medicinal Plants and the Protective Effect of R. palmatum on MTPT-induced Neurotoxicity (한약재 물 추출물의 생리활성 검색 및 MPTP-유도 신경독성에 대한 대황의 보호효과)

  • Kim Tae Eun;Yoon Yeo Min;Park Yong In;Kim Youn Seok;Jeon Byung Hun;Kim Myung Dong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1666-1685
    • /
    • 2004
  • This present study was designed to screen medicinal plants for the treatment of brain diseases such as Parkinson's disease or aging. We tested the effects of the water extracts from 38 species medicinal plants on antioxidant capacity, monoamine oxidase B (MAO-B) inhibitory activity, acetylcholinesterase (AChE) inhibition and antiperoxidation activity in vitro. The water extracts from 38 species were tested on their antioxidant activity using radical scavenging effects against ABTS+. The water extract of C. sappan was showed the highest antioxidant capacity, the antioxidant activity at 1 Jig of herbal extract being 0.38mM TE. Lipid peroxidation in brain homogenates induced by NADPH and ADP-Fe/sup 2+/ was strong inhibited by C. sappan and R. palmatum extracts. Among the 38 medicinal plants investigated, R. palmatum showed significant biological activity (antioxidant capacity, MAO-B inhibiory activity, and AChE inhibitory activity). The protective efficacy of R. palmatum water extract on 1-methyl-4­phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism and its possible mechanism were studied in C57BL/6 mice. Treatment of R. palmatum water extract protected biomacromolecules such as lipids from oxidative damage induced by MPTP. The content of MDA in brain tissue was decreased significantly by R. palmatum extract. These results suggest that R. palmatum water extract plays on effective role in attenuating MPTP-induced neurotoxicity in mice. This protective effect of R. palmatum might be estimated the result from the inhibitory activity on monoamine oxidase B and the enhancement of antioxidant activity.

The Relationship and Mechanism Underlying the Effect of Conscious Breathing on the Autonomic Nervous System and Brain Waves (의식적 호흡이 자율신경과 뇌파에 영향을 미치는 기전에 관하여)

  • Kang, Seung Wan
    • Perspectives in Nursing Science
    • /
    • v.14 no.2
    • /
    • pp.64-69
    • /
    • 2017
  • Purpose: Breathing can be controlled either unconsciously or consciously. In Asian countries, various conscious breathing-control techniques have been practiced for many years to promote health and wellbeing. However, the exact mechanism underlying these techniques has not yet been established. The purpose of this study is to explore the physiological mechanism explaining how conscious breathing control could affect the autonomic nervous system, brain activity, and mental changes. Methods: The coupling phenomenon among breathing rhythm, heart rate variability, and brain waves was explored theoretically based on the research hypothesis and a review of the literature. Results: Respiratory sinus arrhythmia is a well-known phenomenon in which heart rate changes to become synchronized with breathing: inhalation increases heart rate and exhalation decreases it. HRV BFB training depends on conscious breathing control. During coherent sinusoidal heart rate changes, brain ${\alpha}$ waves could be enhanced. An increase in ${\alpha}$ waves was also found and the synchronicity between heart beat rhythm and brain wave became strengthened during meditation. Conclusion: In addition to the effect of emotion on breathing patterns, conscious breathing could change heart beat rhythms and brainwaves, and subsequently affect emotional status.

Phenylethanolamine N-methyltransferase: Regulation of the Enzyme in Adrenal Gland, Brain Stem and Hypothalamus (Phenylethanolamine N-methyltransferase: 부신, 뇌간, 시상하부 효소의 조절)

  • Chun, Yang-Sook;Suh, Yoo-Hun
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.159-168
    • /
    • 1996
  • To determine the regulatory mechanism of phenylethanolamine N-methyltransferase (PNMT) in the adrenal gland and in central nervous system, we observed the change of enzyme activity and mRNA level of PNMT in the adrenal gland, the brain stem, and hypothalamus of rats, which were injected with two neuroleptic agents(reserpine and haloperidol ). Reserpine depleting catecholamines in presynaptic vesicle increased PNMT activities in the adrenal gland and the brain stem to 150% of the control in time-dependent manner, but not in the hypothalamus. Haloperidol blocking dopamine receptor decreased PNMT activities in the adrenal gland and the hypothalamus, but not in the brain stem. Thus, the results indicate that catecholamines inhibit synthesis of epinephrine in the brain stem and the adrenal gland, and that dopamine stimulates synthesis of epinephrine in the hypothalamus and the adrenal gland. In addition, since the change of mRNA levels were nearly in accordance with the change of activities, the transcriptional regulation of PNMT is considered the mechanism of the regulation of epinephrine neuron.

  • PDF