• Title/Summary/Keyword: bph genes

Search Result 31, Processing Time 0.037 seconds

Biological Response of Resistant Genes to Korean Brown Planthopper, Nilaparvata lugens Stål (벼멸구 저항성 유전자에 대한 국내 벼멸구의 생물적 반응 연구)

  • Choi, Nak Jung;Kim, Gwang-Ho;Baik, Chai-Hun;Lee, Bong-Choon
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.202-208
    • /
    • 2019
  • Brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), is one of the most important migratory pests damaging rice in Korea. It invades annually from tropical and subtropical areas via continental air streams. It is necessary to determine the resistance levels of rice varieties in order to control efficiency. The honeydew excretion, development, and reproduction of the migratory BPH were studied by region in a laboratory at $25{\pm}2^{\circ}C$ and $65{\pm}5%\;RH$ and a 16L: 8D photoperiodism conducted on three BPH resistant genes: Bph1, Bph2, and Bph18. The information obtained was reported using the jackknife method, and we created life table statistics accordingly. The feeding amount of Bph1 resistant gene was lower than that of resistant genes. The developmental periods of immature stages ranged from $13.7{\pm}0.10d$ on Bph2 (Namhae, 2015) to $18.5{\pm}1.06d$ on Bph2 (Sacheon, 2016). Reproductive period and female longevity were longest on the non-resistant genes, Bph2 and Bph18 (except 1980s), and the highest fecundity of N. lugens was observed on the two BPH resistant genes. Highest net reproductive rates ($R_0$) were calculated on Bph2 by region. Intrinsic rates of population increase ($r_m$) showed a difference in resistant genes by region. These population parameters showed that migratory regions and biological characteristics of N. lugens vary annually.

Screening of Resistance Genes Linked to Brown Planthopper Using STS Marker in Aromatic Rice Germplasm

  • Kim, Jeong-Soon;Ahn, Sang-Nag;Hong, Sung-Jun;Park, Jong-Ho;Lee, Min-Ho;Han, Eun-Jung;Damodaran, P.N.;Kim, Yong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.167-176
    • /
    • 2011
  • Brown planthopper (BPH) is a serious insect pest of rice crop throughout rice growing countries, and yield loss due to its infection can be up to 60%. This study aimed to evaluate efficiency of molecular markers for screening BPH resistance accessions among 86 aromatic rice germplasm Eighty-six accessions of aromatic rice germplasm included two accessions of Tongil type (bred in Korea), 28 accessions of japonica type and 56 accessions of indica type. We applied eight STS markers (pBPH9, pBPH19, pBPH20, pBPH21, AJ09-b, RG457L, RG457B, and 7312.T4A) which were linked to four of BPH resistance genes, Bph1, Bph13(t), Bph10, and Bph18(t) respectively. One japonica type accession, 415XIr352, and six indica type accessions possessed one or four positive bands when tested with four STS markers linked to Bph1 gene. One indica type aromatic rice, Basmati9-93, showed the target bands linked to the Bph10 gene. The other accessions did not show same fragments as the respective resistant lines. Bph13(t) is the most widely introduced resistance gene and only one accession showed positive bands implying that this accession might harbor Bph10 and Bph18(t) genes. Three aromatic accessions, Domsiah, Khao Dawk Mali 105 and 415XIr352 showed gene pyramiding of Bph1 and Bph13(t). Two indica aromatic rice, Ds 20 and Basmati 9-93, possessed at least two BPH resistance genes, Bph1, Bph18(t) and Bph13(t), Bph18(t), respectively. These results indicates that aromatic rice germplasm have narrow diversities of BPR resistance genes.

Cloning and Phylogenetic Analysis of Two Different bphC Genes and bphD Gene From PCB-Degrading Bacterium, Pseudomonas sp. Strain SY5

  • Na, Kyung-Su;Kim, Seong-Jun;Kubo, Motoki;Chung, Seon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.668-676
    • /
    • 2001
  • Pseudomonas sp. strain SY5 is a PCB-degrading bacterium [24] that includes two different enzymes (BphC1 and BphC2) encoding 2,3-dihdroxybiphenyl 1,2-dioxygenase and BphD encoding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase. The bphC1 and bphC2 genes were found to consist of 897 based encoding 299 amino acids and 882 bases encoding 294 amino acids, respectively, whereas the bphD gene consisted of 861 bases encoding 287 amino acids. According to a homology search, a 50% and 39% similarity between the bphC1 and bphC2 genes at the nucleotide and amino acid level was shown, respectively. The bphC1 gene showed a 38% and 45% similarity at the amino acid level to Alcaligenes eutrophus A5 and Rhodococcus rhodochrous, respectively, whereas, bphC2 showed a 95% and 43% similarity, respectively. A comparison of the deduced amino acid sequence of the bphD product of Pseudomonas sp. SY5 with that of A. eutrophus A5, Pseudomons sp. KKS102, and LB400 showed a sequence identity of 92, 92, and 79%, respectively. Strain SY5 was originally isolated from municipal sewage containing recalcitrant organic compounds an found to have a high degradability of various aromatic compounds [23]. The current study found that strain SY5 had two extradiol-type dioxygenases, which did not hybridize with each other as they had a low similarity, yet a similar structure of evolutionarily conserved amino acids residues for catalytic activity between BphC1 and BphC2 was observed.

  • PDF

Analysis of Gene-specific Molecular Markers for Biotic and Abiotic Stress Resistance in Tropically adapted Japonica Rice Varieties

  • Jung-Pil Suh;Sung-Ryul Kim;Sherry Lou Hechanova;Marianne Hagan;Graciana Clave;Myrish Pacleb
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.292-292
    • /
    • 2022
  • Since 1992, the Rural Development Administration (RDA), Republic of Korea in collaboration with International Rice Research Institute (IRRI) has developed 6 japonica rice varieties(MS11, Japonica 1, 2, 6, 7 and Cordillera 4) that are adaptable to tropical regions. However, these varieties show moderate resistance or susceptibility to certain biotic and abiotic stress. The development of varieties with more stable forms of resistance is highly desirable, and this could be possibly achieved through rapid introgression of known biotic and abiotic resistant genes. In this study, we analyzed the allele types of major biotic stress resistant genes including Xa5, Xa13, Xa21 and Xa25 for bacterial leaf blight, Pi5, Pi40, Pish and Pita2 for blast, tsv1 for rice tungro spherical virus, and Bph6, Bph9, Bph17, Bph18 and Bph32 for brown planthopper by using gene-specific molecular markers. In addition, seed quality related genes Sdr4 for preharvest sprouting and qLG-9 for seed longevity were also analyzed. The results revealed that2h5 and Xa25 resistance alleles showed in all varieties while Pi5 resistance allele showed only in MS11. The Pish resistance allele were present in five varieties except for Japonica 1. Meanwhile, for the rest of the genes, no presence of resistance alleles found in six varieties. In conclusions, most of tropical japonica varieties are lack of the major biotic stress resistant genes and seed quality genes (Sdr4 and qLG-9). Moreover, the results indicated that rapid deployment of a few major genes in the current tropical japonica rice varieties is urgent to increase durability and spectrum of biotic stress resistance and also seed dormancy/longevity which are essential traits for tropical environments.

  • PDF

Association of Benign Prostate Hyperplasia with Polymorphisms in VDR, CYP17, and SRD5A2 Genes among Lebanese Men

  • El Ezzi, Asmahan Ali;Zaidan, Wissam Rateeb;El-Saidi, Mohammed Ahmed;Al-Ahmadieh, Nabil;Mortenson, Jeffrey Benjamin;Kuddus, Ruhul Haque
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1255-1262
    • /
    • 2014
  • Background: The aim of the study was to investigate any associations between benign prostate hyperplasia (BPH) and single nucleotide polymorphisms (SNPs) in the VDR gene (FokI, BsmI, ApaI and Taq${\alpha}$I loci) and the CYP17 gene (MspA1I locus), as well as TA repeat polymorphism in SRD5A2 gene among Lebanese men. Materials and Methods: DNA extracted from blood of 68 subjects with confirmed BPH and 79 age-matched controls was subjected to PCR/PCR-restriction fragment length polymorphism analysis. The odds ra=tio (OR) of having a genotype and the relative risk (RR) of developing BPH for having the genotype were calculated and the alleles were designated risk-bearing or protective. Results: Our data indicated that the A and B alleles of the VDR ApaI and BsmI SNPs were highly associated with increased risk of BPH (p=0.0168 and 0.0002, respectively). Moreover, 63% of the controls compared to 43% of the subjects with BPH were homozygous for none of the risk-bearing alleles (p=0.0123) whereas 60% of the controls and 28% of the subjects with BPH were homozygous for two or more protective alleles (p<0.0001). Conclusions: For the first time, our study demonstrated that ApaI and BsmI of the VDR gene are associated with risk of BPH among Lebanese men. Our study also indicated that overall polymorphism profile of all the genes involved in prostate physiology could be a better predictor of BPH risk.

Versatile Catabolic Properties of Tn4371-encoded bph Pathway in Comamonas testosteroni (Formerly Pseudomonas sp.) NCIMB 10643

  • Kim, Jong-Soo;Kim, Ji-Hyun;Ryu, Eun-Kyeong;Kim, Jin-Kyoo;Kim, Chi-Kyung;Hwang, In-Gyu;Lee, Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.302-311
    • /
    • 2004
  • Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643 can grow on biphenyl and alkylbenzenes $(C_2-C_7)$ via 3-substituted catechols. Thus, to identify the genes encoding the degradation, transposon-mutagenesis was carried out using pAG408, a promoter-probe mini-transposon with a green fluorescent protein (GFP), as a reporter. A mutant, NT-1, which was unable to grow on alkylbenzenes and biphenyl, accumulated catechols and exhibited an enhanced expression of GFP upon exposure to these substrates, indicating that the gfp had been inserted in a gene encoding a broad substrate range catechol 2,3-dioxygenase. The genes (2,826 bp) flanking the gfp cloned from an SphI-digested fragment contained three complete open reading frames that were designated bphCDorfl. The deduced amino acid sequences of bphCDorfl were identical to 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC), 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (BphD), and OrfI, respectively, that are all involved in the degradation of biphenyl/4-chlorobiphenyl (bph) by Ralstonia oxalatica A5. The deduced amino acid sequence of the orfl revealed a similarity to those of outer membrane proteins belonging to the OmpW family. The introduction of the bphCDorfl genes enabled the NT-l mutant to grow on aromatic hydrocarbons. In addition, PCR analysis indicated that the DNA sequence and gene organization of the bph operon were closely related to those in the bph operon from Tn4371 identified in strain A5. Furthermore, strain A5 was also able to grow on a similar set of alkylbenzenes as strain NCIMB 10643, demonstrating that, among the identified aromatic hydrocarbon degradation pathways, the bph degradation pathway related to Tn4371 was the most versatile in catabolizing a variety of aromatic hydrocarbons of mono- and bicyclic benzenes.

Identification of the bphC Gene for meta-Cleavage of Aromatic Pollutants from a Metagenomic Library Derived from Lake Waters

  • Moon Mi-Sook;Lee Dong-Hun;Kim Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.393-399
    • /
    • 2004
  • Useful genes can be Screened from various environments by construction of metagenomic DNA libraries. In this study, water samples were collected from several lakes in mid Korea, and analyzed by T-RFLP to examine diversities of the microbial communities. The crude DNAs r were extracted by the SDS-based freezing-thawing method, and then further purified using an $UltraClean^{TM}$ kit (MoBio, USA). The metagenomic libraries were constructed with the DNAs partially digested with EcoR I, BamH I, and Sac II in Escherichia coli DH 10B using the pBACe3.6 vector. About 44.0 Mb of metagenomic libraries were obtained with average inserts 13-15 kb in size. The bphC genes responsible for degradation of aromatic hydrocarbons via mets-cleavage were identified from the metagenomic libraries by colony hybridization using the bphC specific sequence as a probe. The 2,3-dihydroxybiphenyl (2, 3-DHBP) dioxygenase gene (bphC ), capable of degradation of 2,3-DHBP, was cloned and its nucleotide Sequences analyzed. The genes consisted of 966 and 897 base pairs with an ATG initiation codon and a TGA termination codon. The activity of the 2,3-DHBP dioxygenase was highly expressed to 2,3-DHBP and Showed a broad substrate range to 2,3-DHBP, catechol, 3-methylcatechol and 4-methylcatechol. These results in-dicated that the bphC gene identified from the metagenomes derived from lake water might be useful in the development of a potent strain for degradation of aromatic pollutants.

Flavonoids baicalein and kaempferol reduced inflammation in benign prostate hyperplasia patient-derived cells through regulating mitochondrial respiration and intracellular oxygen species

  • Lee, Dongu;Lee, Jong Hun;Lee, Seung Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.213-217
    • /
    • 2021
  • Benign prostate hyperplasia (BPH) is one of the most common elderly disease, and because of prolonged incubation period and many side effects of medication or surgical interventions, the use of dietary phytochemicals is considered as an effective measure for prevention of BPH. The purpose of this study is to investigate the mechanism of inhibition effect for BPH by flavonoids such as baicalein and kaempferol. BPH cells were collected through biopsy from patients with PSA of 4 or higher, followed by primary culture. In vitro experiments were conducted to evaluate mitochondrial respiration, intracellular reactive oxygen species (ROS) level and expression of inflammatory markers, genes, and anti-oxidants. In conclusion, baicalein and kaempferol have been demonstrated to inhibit BPH through lowering ROS, thereby reducing inflammation triggers, and reduced inflammation. This study is expected to be helpful in the development of flavonoids that have a clinical effect on suppressing BPH.

Preference, Development and Fecundity of the Brown Planthopper(Nilaparvata lugens St${\aa}$l) Biotypes Fed on Different Cultivars of Rice with Various Resistance Gence (벼의 품종저항성이 벼멸구 각 생태형의 선호성, 발육 및 증식능력에 미치는 영향)

  • 박영도;송유한
    • Korean journal of applied entomology
    • /
    • v.27 no.2
    • /
    • pp.87-93
    • /
    • 1988
  • Some attempts were made to investigate the biological characteristics of the brown planthopper(BPH), Nilaparvata lugens St${\aa}$l, biotypes in terms of perference in feeding oviposition on rice field, egg and nymphal periods, egg hatchability, emergemce ratio, growth index, adult lingevity and gecundity fed on 60-day-old rece cultivaes with different resistance genes. Feeding and oviposition perference of the three BPH biotypes on Dongjinbyeo with no resistance gene were shown very higher than on rice cultivars with resistance genes. Those of biotype-2 on Cheongcheongbyeo with bph 1 gene and bitype-3 on Milyang 63 with bph 2 gene were relatively high, however, they were still remarkably lower than those of Dongjibyeo. The egg and nymphal periods of the three BPH biotyes on Milyang 23 were shorter than on the other rice cultivars. The periods of biotype-2 on Cheongcheongbyeo and biotype-3 on Milyang 63 were as short as those of the three BPH biotypes on Milyang 23. The egg hachability, emergence ratio, and growth index of the three BPH bioyoes on Milyang 23 were higher than on the other rice cultivars and those of biotype-2 on Cheongcheongbyeo and biotyoe-3 on Milyang 63 were as high as on Milyang 23. The female adult longevity of the BPH biotype-1 on Milyang 23 was longer than on the other cultivaes, and that of biotype-2 on Cheongcheongbyeo and bioty-3 an Milyang 63 were as ling as on Milyang 23. The number of egg laid by a female of the three BPH biotypes were greatly increased on Milyang 23. Those of biotype-2 on Cheongcheongbyeo and biotype-3 an Milyang 63 were also greatly increased.

  • PDF

Induction by Carvone of the Polychlorinated Biphenyl (PCB)-Degradative Pathway in Alcaligenes eutrophus H850 and Its Molecular Monitoring

  • Park, Young-In;So, Jae-Seong;Koh, Sung-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.804-810
    • /
    • 1999
  • There is a possibility that carvone, a monoterpene from spearmint (Mentha spicata), could induce the bph degradative pathway and genes in Alcaligenes eutrophus H850, which is a known Gram-negative PCB degrader with a broad substrate specificity that was thoroughly investigated with Arthrobacter sp. BIB, a Gram-positive PCB degrader. The strains BIB and H850 were unable to utilize and grow on the plant terpene [(R)-(-)-carvone] (50ppm) to be recognized as a sole carbon source. Nevertheless, the carvone did induce 2,3-dihydroxybiphenyl 1,2-dioxygenase (encoded by bphC) in the strain B lB, as observed by a resting cell assay that monitors accumulation of a yellow meta ring fission product from 4,4'-dichlorobiphenyl (DCBp). The monoterpene, however, did not appear to induce the meta cleavage pathway in the strain H850. Instead, an assumption was made that the strain might be using an alternative pathway, probably the ortho-cleavage pathway. A reverse transcription (RT)-PCR system, utilizing primers designed from a conserved region of the bphC gene of Arthrobacter sp. M5, was employed to verify the occurrence of the alternative pathway. A successful amplification (182bp) of mRNA transcribed from the N-terminal region of the bphC gene was accomplished in H850 cells induced by carvone (50ppm) as well as in biphenyl-growth cells. It is, therefore, likely that H850 possesses a specific PCB degradation pathway and hence a different substrate specificity compared with B1B. This study will contribute to an elucidation of the dynamic aspects of PCB bioremediation in terms of roles played by PCB degraders and plant terpenes as natural inducer substrates that are ubiquitous and environmentally compatible.

  • PDF