• Title/Summary/Keyword: box connection

Search Result 127, Processing Time 0.019 seconds

RELATIONSHIP BETWEEN THE STRUCTURE OF A FACTOR RING R/P AND DERIVATIONS OF R

  • Karim Bouchannafa;Moulay Abdallah Idrissi;Lahcen Oukhtite
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1281-1293
    • /
    • 2023
  • The purpose of this paper is to study the relationship between the structure of a factor ring R/P and the behavior of some derivations of R. More precisely, we establish a connection between the commutativity of R/P and derivations of R satisfying specific identities involving the prime ideal P. Moreover, we provide an example to show that our results cannot be extended to semi-prime ideals.

Analysis of Overvoltage and Reduction Methods of Insulation Joint Box in Underground Power Cable Systems (지중송전케이블계통에서 절연통의 과전압 해석 및 억제대책 검토)

  • Hong, Dong-Seok;Jeong, Chae-Gyun;Lee, Jong-Beom;Seo, Jae-Ho;Jo, Han-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.102-108
    • /
    • 2002
  • This paper describes the overvoltage analysis and reduction methods of insulation joint boxes in underground transmission power cables when direct lightning surge strikes to overhead transmission line. An actual 154kV combined transmission line with underground Power cables was modelled in ATPDraw for simulation. Simulations were performed to analyze the overvoltage between insulation joint boxes, sheath-to-ground voltage according to the distance between cable conductors, cable lengths, burying types, CCPU connection types. The most effective method to reduce the induced overvoltage of Insulation joint boxes was proposed. It is evaluated that the proposed reduction method riven from the detailed simulations can be effectively applied to the actual underground power cable systems.

Behavior and design of stainless steel tubular member welded end connections

  • Kiymaz, Guven;Seckin, Edip
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.253-269
    • /
    • 2014
  • Among the various alternatives to make a steel tubular member connection, making a slotted and gusset plate welded connection is one of the most frequently preferred alternatives. This type of connection is essentially an end connection that is made by slotting the tube longitudinally, inserting the gusset plate and then placing longitudinal fillet welds at the tube-to-plate interface. In this paper an experimental study on the behaviour of such connections in stainless steel is presented. 24 specimens were tested under concentrically applied axial tensile forces for varying tube-to-gusset plate weld lengths. Both circular and box section members were considered in the test program. Load-deformation curves were obtained and comparisons were made in terms of strength and ductility. The results obtained from the study were then critically examined and compared with currently available design guidance for slotted gusset plate welded tubular end connections. It is noted that no specific rules exist in international specifications on structural stainless steel which cover the design of such connections. Therefore, the results of this study are compared with the existing design rules for carbon steel.

Structural characteristics of welded built-up square CFT column-to-beam connections with external diaphragms

  • Lee, Seong-Hui;Yang, Il-Seung;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.261-279
    • /
    • 2010
  • Generally, a box tube, which is used for an existing square CFT structure, is made by welding four plates. The manufacturing efficiency of this steel tube is poor, and it also needs special welding technology to weld its internal diaphragm and the through diaphragm. Therefore, an interior-anchor-type square steel tube was developed using the method of cold-forming thin plates to prevent welding of the stress concentration position, and to maximize the section efficiency. And, considering of the flow of beam flange load, the efficiency of erection and the weldability of the diaphragm to thin walled steel column, the external diaphragm connection was selected as the suitable type for the welded built-up square CFT column to beam connection. And, an analytical study and tests were conducted to evaluate the structural performance of the suggested connection details and to verify the suggested equations for the connection details. Through this study, the composite effect of the internal anchor to concrete, the resistance and stress distribution of the connections before and after the existing column is welded to the beam, the effective location of welding in connection were analyzed.

Quasi-Static Test of Precast Concrete Large Panel Subassemblage (P.C 대형판넬 부분구조물의 Quasi-Static 실험연구)

  • Choi, Jeong-Su;Lee, Han-Seon;Kim, U;Hong, Gap-Pyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.73-78
    • /
    • 1990
  • Large panel building systems are composed of vertical wall panels which support horizontal roof and floor panels to form a box like structure. The simplecity of the connections, which makes precast concrete economically viable, causes a lack of continuity in stiffness, strength and ductility. This precast concrete large panel systems typically have weak connection regions. Three types of 2-story full-scale precast concrete subassemblages were tested under reversed cyclic loading. The seismic resistance capacity and failure mode of each system are compared in connection with the characteristics of joint connection details.

  • PDF

Seismic Performance of Existing Welded Steel Moment Connections to Built-up Box Columns (기존 용접형 철골 박스기둥 접합부의 내진성능)

  • Kim, Tae-Jin;Stojadinovic, B.;Whittaker, A.S.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.25-32
    • /
    • 2006
  • In this study the seismic performance of welded steel moment connections to built-up box columns in the existing building built before 1994 Northridge earthquake was evaluated by cyclic tests. According to the test results, the pre-Northridge steel moment connections to the box columns also suffered from brittle fracture similar to that in the H-shaped column connections. However, the flange force transfer mechanism of the box column connections was substantially different from that of the H-shaped column connections, and the patterns of crack propagation may be changed due to the shape of the box column. Therefore, it is required to develop proper details for the box column connections instead of using the research results for H-shaped column connections in order to enhance the seismic performance the connections.

FINITE STRIP ANALYSIS OF FOLDED LAMINATED COMPOSITE PLATES (유한대판법에 의한 복합적층절판의 해석)

  • Yoon, Seok Ho;Han, Sung Cheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.41-52
    • /
    • 2001
  • In this paper the analysis of laminate composite folded plates with arbitrary angle connection like box girder is studied by finite strip method Total stiffness of laminated plate is obtained by integration of the stiffness in each layer or lamina through laminate thickness and total stiffness in each layer or lamina through laminate thickness and total tiffness matrix is obtained by substitutionto equilibrium equation derived from the minimum total potential energy theorem. The assumed displacement functions for a finite strip method in plate or box girder analysis are combinations of one-way polynomial functions in the transverse direction and harmonic functions in the span-wise direction. Finite strip method with the merits of the simplification in modeling and the reduction of analytical time is accurate in the analysis of laminate composite folded plates shaped like box firders.

  • PDF

A Study on the Characteristics of Coupling Loss factor Associated with Fluid Loading (접수 구조물의 연성손실계수 변화에 관한 연구)

  • 류정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2000
  • Statistical Energy Analysis(SEA) is an efficient tool to predict the broadband noise and vibration for the huge and complex structures such as aircraft and ships. To estimate the noise and vibration by using SEA accurately, the characteristics of SEA parameters associated with fluid loading have to be investigated. In this report, the fluid loaded coupling loss factors were calculated for an 'L' and 'T' type line connections and compared to the ones without fluid loading. Then, the vibration levels for steel box model with 'L' and 'T' type line connection were computed using the fluid loaded and no fluid loaded coupling loss factors, respectively. As a result, the calculated vibration levels of the model using the fluid loaded coupling loss factors were lower than those without fluid loading. As a conclusion, it is necessary to use the fluid loaded coupling loss factors for increasing the prediction accuracy on the noise and vibration of immersed structures.

  • PDF

An Analysis and Retrofit of U-rib Fatigue Cracks in the Steel Deck Bridge (강바닥판 교량의 U리브 피로균열 해석 및 보강)

  • Ryu, Duck-Yong;Jung, Hie-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.176-183
    • /
    • 2010
  • In the steel deck box girder bridges, the deck is composed of deck plate, longitudinal and lateral direction ribs. The bridge, that is considered in this study, has been used for about 40 years and, recently, several cracks were found in the connection area of U-ribs. Further, additional cracks were occurred after some lateral rib plates and longitudinal frames were attached for the purpose of reinforcement. Therefore, the connection method in the U-ribs reinforcement was changed from the bolting to the weldment to get rid of stress concentration and further cracking. In this study, the stress in the U-ribs connection was analysed numerically and variable amplitude stress for the real traffic loads was measured experimentally before and after the frame reinforcement. Finally, the effects of reinforcement method were investigated and discussed.

Analysis Evaluation of Torsional Behavior of Hybrid Truss Bridge according to Connection Systems (격점구조형식에 따른 복합트러스교의 비틀림 거동 해석)

  • Choi, Ji-Hun;Jung, Kwang-Hoe;Kim, Tae-Kyun;Lee, Sang-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.3-12
    • /
    • 2014
  • Hybrid Truss Bridge (HTB) uses steel truss webs instead of concrete webs in prestressed box girder bridges, which is becoming popular due to its structural benefits such as relatively light self-weight and good aesthetics appearance. Since the core technology of this bridge is the connection system between concrete slabs and steel truss members, several connection systems were proposed and experimentally evaluated. Also, the selected joint system was applied to the real bride design and construction. The research was performed on the connection system, since it can affect the global behavior of this bridge such as flexural and fatigue behaviors as well as the local behavior around the connection region. The evaluation study showed that HTB applied to a curved bridge or an eccentrically loaded bridge had a weak torsional capacity compared to an ordinary PSC box girder bridge due to the open cross-sectional characteristic of HTB. Therefore, three types of girders with different joint system between truss web member and concrete slab were tested for their torsional capacity. In this study, the three different types of HTB girders under torsional loading were simulated using FEM analysis to investigate the torsional behavior of HTB girders more in detail. The results are discussed in detail in the paper.