• Title/Summary/Keyword: bovine herpesvirus type 1

Search Result 3, Processing Time 0.021 seconds

Real-Time PCR for Quantitative Detection of Bovine Herpesvirus Type 1 (Bovine Herpesvirus Type 1 정량 검출을 위한 Real-Time PCR)

  • Lee, Dong-Hyuck;Jeong, Hyo-Sun;Lee, Jung-Hee;Kim, Tae-Eun;Lee, Jung-Suk;Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • Bovine blood, cell, tissue, and organ are used as raw materials for manufacturing biopharmaceuticals, tissue engineered products, and cell therapy. Manufacturing processes for the biologicals using bovine materials have the risk of viral contamination. Therefore viral validation is, essential in ensuring the safety of the products. Bovine herpesvirus type 1 (BHV-1) is the most common bovine pathogen found in bovine blood, cell, tissue, and organ. In order to establish the validation system for the BHV-1 safety of the products, a real-time PCR method was developed for quantitative detection of BHV-1 in raw materials, manufacturing processes, and final products as well as BHV-1 clearance validation. Specific primers for amplification of BHV-1 DNA was selected, and BHV-1 DNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be $2\;TCID_{50}/ml$. The real-time PCR method was validated to be reproducible and very specific to BHV-1. The established real-time PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with BHV-1. BHV-1 DNA could be quantified in CHO cell as well as culture supernatant. Also the real-time PCR assay could detect $10\;TCID_{50}/ml$ of BHV-1 artificially contaminated in bovine collagen. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of BHV-1 contamination during the manufacture of biologics.

Cloning and Expression of Bovine Herpesvirus-1 gIII of Korean Isolate PQ Strain (소 허피스바이러스 gIII 유전자 크론닝 및 발현)

  • Kweon, Chang-Hee;Min, Boo-Ki
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.2
    • /
    • pp.173-179
    • /
    • 1996
  • The gene encoding gIII of bovine herpesvirus type 1 (BHV-1) PQ strain was cloned and expressed in baculovirus. Although the gIII gene is located in Hind III I fragment as the case of the other BHV-1 strains, differences in size and restriction endonuclease site within the fragment were identified. The gIII expression was predominantly detected on the surface on insect cells by indirect immunofluoresecnce assay using monoclonal antibody. The western blotting analysis also revealed the presence of expressed protein of a similar molecular size to the original gIII protein. The immunogenicity of expressed protein were tested in guinea pigs. The immunized guinea pigs with expressed protein developed the neutralizing antibodies against BHV-1.

  • PDF

Cytotoxicity of Anti-CD4 Antibody Activated $CD4^+$ T-Lymphocytes against Herpesvirus-Infected Target Cells is Dependent on $p56^{lck}$ and $p59^{fyn}$ Protein Tyrosine Kinase Activity

  • Choi, Sang-Hoon;Jang, Yong-Suk;Oh, Chan-Ho
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.355-363
    • /
    • 1998
  • MHC unrestricted, antigen nonspecific killing by $CD4^+$ T-cells against virally-infected target cells was induced following cross-linking of CD4 molecules. The cytotoxicity of antibody-activated $CD4^+$ T-cells was abolished by genistein (4',5,7-trihydroxyisoflavone), a protein tyrosine kinase (PTK) inhibitor, but not by H-7, a protein kinase C (PKC) inhibitor. Genisteintreated human or bovine peripheral blood $CD4^+$ T-cells lacked PTK activity and failed to kill virally-infected target cells even after cross-linking of CD4 molecules. The cross-linking of CD4 molecules did not induce effector cell proliferation or the transcription of TNF ${\beta}$. TNF ${\beta}$ synthesis was up-regulated by incubating antibody activated effector cells with bovine herpesvirus type 1 (BHV-1) infected D17 target cells. Anti-TNF ${\beta}$ antibody partially abrogated direct effector cell-mediated antiviral cytotoxicity. On the other hand, this antibody effectively neutralized antiviral activity of effector and target cell culture supernatants against BHV-1 infected D17 cells. The inhibition level of the antiviral activity by the antibody was dependent on effector and target cell ratio. These findings have importance to define the mechanisms of how CD4 cytotoxic cells control viral infection.

  • PDF