• Title/Summary/Keyword: bovine IVM/IVF embryos

Search Result 76, Processing Time 0.027 seconds

Production of Chimera by Embryos Aggregation Techniques in Bovine - Review-

  • Suzuki, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.8
    • /
    • pp.1188-1195
    • /
    • 2001
  • A tetraparental chimeric bull was successfully produced by aggregating bovine IVF embryos of F1 (female Holstein${\times}$male Japanese Black) and F1(female Japanese Brown${\times}$male Limousin) and culturing in vitro without the zona pellucida at Yamaguchi Research Station in Japan. In the microsatellite genotyping, 12% (28/228) microsatellite primer sets ware potentially useful for this parentage analysis in the chimeric bull, 78.6% (22/28) of microsatellite present in the chimeric bull were uniquely contributed from the Japanese Black and 21.4% (6/28) from Limousin. This chimeric bull semen was used in producing IVF embryos. The chromosome preparations were made from peripheral lymphocytes. Based on chromosome analysis the Chimera had apparently normal chromosomes (29 acrocentric pairs, one large sub metacentric X chromosome and one small sub metacentric Y chromosome). The proportion of acrosome reacted spermatozoa after 1 h of incubation was higher (p<0.01) with the Chimera than with the Holstein and in Japanese Brown bulls. But did not differ from Japanese Black and Limousin bull sperm. Fertilization rates observed after 5 h of sperm-oocyte incubation with Chimera sperm were higher (p<0.05) than with Japanese Brown and (p<0.01) than with Holstein sperm, but did not differ from Japanese Black and Limousin sperm. The cleavage rates of IVF oocytes inseminated with Chimera sperm were also higher (p<0.001) compared with Holstein, (p<0.01) Japanese Brown and (p<0.05) Limousin, but did not differ from Japanese Black sperm. The blastocyst rates of IVM oocytes inseminated with sperm were higher (p<0.05) than in Limousin, Japanese Brown and Holstein, but did not differ from Japanese Black. Chimeric cattles were produced by aggregation of parthenogenetic (Japanese Brown) and in vitro fertilized (Holstein) bovine embryos at the Yamaguchi Research Station in Japan and by aggregation of parthenogenetic (Red Angus) and in vitro fertilized (Holstein) embryos at the St. Gabriel Research Station in Louisiana. The aggregation rate of the reconstructed demi-embryos cultured in vitro without agar embedding was significantly lower than with agar embedding. The aggregation was also lower when the aggregation resulted from a whole parthenogenetic and IVF-derieved embryos cultured without agar than when cultured with agar. The development rate to blastocysts, however, was not different among the treatment. To verify parthenogenetic and the cells derieved from the male IVF embryos in blastocyst formation, 51 embryos were karyotyped, resulting in 27 embryos having both XX and XY chromosome plates in the same sample, 14 embryos with XY and 10 embryos with XX. The viability and the percentage of zonafree chimeric embryos at 24 h following cryopreservation in EG plus T with 10% PVP were significantly greater than those cryopreserved without PVP. Pregnancies were diagnosed in both stations after the transfer of chimeric blastocysts. Twin male and single chimeric calves were delivered at the Yamaguchi station, with each having both XX and XY chromosomes detected. Three pregnancies resulted from the transfer of 40 chimeric embryos at the Louisiana station. Two pregnancies were Jost prior to 4 months and one phenotypically chimeric viable male born.

Effect of Thiol Compounds and Antioxidants on In Vitro Development and Intracellular Glutathione Concentrations of Bovine Embryos Derived from In Vitro Matured and In Vitro Fertilized II. Effect of Antioxidants with Somatic Cells on Development and Intracellular Glutathione Concentrations of Bovine IVM/IVF Embryos (Thiol 화합물과 항산화제 첨가배양이 소 체외수정란의 체외발육과 세포내 Glutathione 농도 변화에 미치는 효과 II. 항산화제 첨가와 체세포 공동배양이 소 체외수정란의 체외발육과 세포내 Glutathione 농도 변화에 미치는 영향)

  • 양부근;박동헌;우문수;정희태;박춘근;김종복;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.4
    • /
    • pp.345-353
    • /
    • 1997
  • Antioxidants and antioxidants with somatic cell co-culture, bovine oviduct epithelial cells(BOEC) and buffalo rat liver cells(BRLC), were studied as a mean of increasing the development and intracellular glutathione(GSH) concnetrations of bovine embryos derived from in vitro matured(IVM) and in vitro fertilized(IVF) oocytes. Cell numbers and intracellular GSH concentrations of blastocysts were also counted. The developmental rate beyond morula stages in CRlaa containing taurine(2.5mM), superoxide dismutase(SOD, 600U) and catalase(250U) were 1%, 75.0%, 64.8% and 62.3%, respectively. The developmental rate in antioxidant groups was significantly higher than in control(P<0.05). The intracellular GSH concentrations of blastocysts cultured in 0, 2.5mM taurine, 600U SOD and 250U catalase were 33.8pM, 39.3pM, 42.3pM and 54.8pM, respectively. This result indicated that the developmental rates and intracellular GSH concentrations of catalase group was significantly higher than any other groups(P<0.05). The developmental capacity in CRlaa plus various antioxidants co-cultured with BOEC were 55.3%(control), 74.1%(2.5mM taurine), 66.7%(600U SOD) and 70.7%(250U catalase) and in CRlaa plus various antioxidants co-cultured with BRLC in control, 2.5mM taurine, 600U SOD and 250U catalase were 63.8%, 75.5%, 71.0% and 73.5%, respectveily, the intracellular GSH concentrations of blastocyst embryos co-cultured with BOEC and BRLC in CRlaa with 0.25mM taurine, 600U SOD and 250U catalase were 73.4pM and 64.4pM, 79.9pM and 67.5pM, 82.3pM and 71.7pM, and 83.0pM and 80.0pM, respectively. Cell numbers of blastocysts were not difference in all experimental groups. These studies indicate that andtioxidants and antioxidant with somatic cell co-culture can increase the proportion of embryo that developed into morula and blastocysts, and the intracellular GSH concentrations of blastocyst embryos.

  • PDF

Inhibition of Reactive Oxygen Species Generation by Antioxidant Treatments during Bovine Somatic Cell Nuclear Transfer

  • Bae, Hyo-Kyung;Kim, Ji-Ye;Hwang, In-Sun;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.36 no.2
    • /
    • pp.115-120
    • /
    • 2012
  • This study was conducted to examine the optimal concentration and treatment time of antioxidants for inhibition of the ROS generation in bovine somatic cell nuclear transfer (SCNT) embryos. Bovine oocytes were activated parthenogenetically, during which oocytes were treated with various antioxidants to determine the optimal concentrations and kind of antioxidants. Determined antioxidants were applied to oocytes during in vitro maturation (IVM) and/or SCNT procedures. Finally, antioxidant-treated SCNT embryos were compared with in vitro fertilized (IVF) embryos. $H_2O_2$ levels were analyzed in embryos at 20 h of activation, fusion or insemination by staining of embryos in $10{\mu}M$ 2'7'-dichlorodihydrofluorescein diacetate (H2DCFDA) dye, followed by fluorescence microscopy. $H_2O_2$ levels of parthenogenetic embryos were significantly lower in $25{\mu}M$ ${\beta}$-mercaptoethanol (${\beta}$-ME), $50{\mu}M$ L-ascorbic acid (Vit. C), and $50{\mu}M$ L-glutathione (GSH) treatment groups than each control group ($24.0{\pm}1.5$ vs $39.0{\pm}1.1$, $29.7{\pm}1.0$ vs $37.0{\pm}1.2$, and $32.9{\pm}0.8$ vs $36.3{\pm}0.8$ pixels/embryo, p<0.05). There were no differences among above concentration of antioxidants in direct comparison ($33.6{\pm}0.9{\sim}35.2{\pm}1.1$ pixels/embryo). Thus, an antioxidant of $50{\mu}M$ Vit. C was selected for SCNT. $H_2O_2$ levels of bovine SCNT embryos were significantly lower in embryos treated with Vit. C during only SCNT procedure ($26.4{\pm}1.1$ pixels/embryo, p<0.05) than the treatment group during IVM ($29.9{\pm}1.1$ pixels/embryo) and non-treated control ($34.3{\pm}1.0$ pixels/embryo). Moreover, $H_2O_2$ level of SCNT embryos treated with Vit. C during SCNT procedure was similar to that of IVF embryos. These results suggest that the antioxidant treatment during SCNT procedures can reduce the ROS generation level of SCNT bovine embryos.

In Vitro Culture and Cryopreservation of Bovine Embryos Derived from Matured and Fertilized In Vitro (소 체외수정란의 실용화를 위한 체외배양과 동결보존에 관한 연구)

  • 양부근;정희태;김정익
    • Journal of Embryo Transfer
    • /
    • v.10 no.1
    • /
    • pp.53-63
    • /
    • 1995
  • The effects of different protein sources (serum vs bovine serum albumin), growth factors (EGF and PDGF) and co-culture with various type of somatic cel1s (BOEC, MEF and BRL) on the in vitro development of in vitro matured / in vitro fertilized bovine oocytes were examined, and the viability of frozen/thawed embryos derived from IVM /IVF was examined. Cell numbers of blastocysts were also counted. In Experiment 1, CR$_1$aa with serum was superior to CR$_1$aa with BSA in producing morulae plus blastocysts from IVM /IVF oocytes(24.4% vs 30.4%, p>0.05). In Experiment 2, more morulae plus blastocysts(42.3%) were produced in CR$_1$aa containing long /ml EGF than in the control CR$_1$aa(33.3%). In Experiment 3, 2- to 8-cell embryos derived from IVM /IVF oocytes were randomly allotted to one of 4 culture groups : a) CR$_1$aa ; b) CR$_1$aa + ing /ml PDGF ; CR$_1$aa + Sng /ml PDGF ; CR$_1$aa + lOng /ml PDGF ; culture resulted in 21.3, 51.2, 41.4 and 45.9%(p<0.05), respectively, developing into morulae and blastocysts. In Experiment 4, 0 and Sng /ml PDGF added to CR$_1$aa coculture with BRL or BOEC yielded 47.5, 42.5, 33.8 and 41.6% morulae and blastocysts, respectively. In Experiment 5, the proportion of embryos into morulae and blastocysts was highest in CR$_1$aa with MEF coculture group(50.9%) compared to any other group(CR$_1$aa, 22.3%; CR$_1$aa+BRL, 32.9%; CR$_1$aa+BOEC, 33.8%, p>0.05). In Experiment 6, survival rate of blastocysts produced by in vitro fertilization when cryoprotectant was removed in 0.7M glycerol+0.7M sucrose and 0.7M sucrose solution for 10 min. after thawing at 2$0^{\circ}C$ (Exp. H, 58.8%) was slightly higher than when cryoprotectant was removed 10%, 6.7% and 3.3% glycerol for 10 min. after thawing at 37$^{\circ}C$ (Exp. I, 54.3%). These study indicate that growth factors and somatic cell co-culture can increase the proportion of embryos that develop into morulae and blastocysts without an increase in the cell number and frozen /thawed method employed this experiment was not different.

  • PDF

STUDIES ON PRODUCTION AND EFFICIENT UTILIZATION OF LIVESTOCK EMBRYOS BY IN VITRO FERTILIZATION AND MICROMANIPULATION IV. NUCLEAR TRANSPLANTATION AND ELECTROFUSION FOR CLONING IN BOVINE FOLLICULAR OOCYTES

  • Chung, Y.C.;Kim, C.K.;Song, X.X.;Yoon, J.T.;Choi, S.H.;Chung, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.6
    • /
    • pp.641-645
    • /
    • 1995
  • This study was conducted to develop a method for production of nuclear transplant bovine embryos using in vitro-matured (IVM) oocytes and to examine the effect of different conditions of electrofusion on fusion rate and developmental capacity of donor nucleus transplanted to enucleated oocytes. Eight- to sixteen-cell embryos derived from oocytes matured and fertilized in vitro used as donor blastomeres and IVM oocytes were used as recipient oocytes. Oocytes were enucleated immediately after 23-24 h IVM and then reconstituted with a donor blastomere in two different micromanipulation media. Fusion rate and subsequent development of the reconstituted oocytes was compared under the different electric stimuli and recipient oocyte ages. Success rate of enucleation was significantly higher in TCM-199 medium containing FCS than in DPBS. The high fusion rate(75-94%) and development (6.4-14.8%) to morulae and blastocyst (M + B) were obtained from 0.6-0.75 kV/cm DC voltage, although total cleavage was not different among the electric pulses. Most optimal condition of electric stimulation for fusion and development was 1 DC voltage of 0.75 kV/cm, in which 80.5% of oocytes were fused, 80.0% and 31.7% of which was cleaved and developed to M + B, respectively. No M + B was obtained from 1.2 kV/cm DC voltage regardless of pulse frequency. Recipint oocyte age at electrofusion greatly affected the cleavage and subsequent development to M + B, showing high rate at 40-41 h oocyte maturation. These results suggest that a suitable condition of electrofusion for donor nuclei derived from IVF may be 1-2 DC pulses of 0.7 kV/cm for $70{\mu}sec$ and that processing of a transplanted nucleus in IVM oocytes may be affected by maturation age of recipient oocytes.

Effect of Alpha Lipoic Acid as an Antioxidant Supplement during In Vitro Maturation Medium on Bovine Embryonic Development

  • Hassan, Bahia M.S.;Fang, Xun;Roy, Pantu Kumar;Shin, Sang Tae;Cho, Jong Ki
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.123-130
    • /
    • 2017
  • This study was conducted to investigate the effects of alpha-lipoic acid (aLA) as an antioxidant that decrease the reactive oxygen species (ROS) in bovine embryonic development. Slaughterhouse derived bovine immature oocytes were collected and 4 different concentrations (0, 5, 10 and 20 mM) of aLA was supplemented in bovine in vitro maturation (IVM) medium. After 20 hrs of IVM, maturation rates, levels of ROS and glutathione (GSH), and further embryonic development after parthenogenetic activation (PA) and in vitro fertilization (IVF) was investigated according to aLA concentrations. Maturation rate was significantly higher in 10 mM group than other groups (80.5% vs. 62.9, 73.9, 64.2%; P<0.05). In the levels of ROS and GSH in matured oocytes as an indicator of oocyte quality, significantly better results were shown in 5 and 10 mM groups compared with other 2 groups. After IVM, significantly higher rates of blastocyst formation were shown in 10 mM groups in both of PA (27.9% vs. 18.8, 22.3, 14.2%; P<0.05) and IVF (32.6% vs. 23.9, 27.3, 16.2%; P<0.05) embryos. In addition, significantly more cell total cell number and higher inner cell mass ratio in 10 mM PA and IVP blastocysts showed developmental competence in 10 uM groups. Therefore, based on the entire data from this study, using $10{\mu}M$ of aLA confirmed to be the optimal concentration for bovine oocyte maturation and embryonic development.

Effect of Trehalose and Sugar-addition on the Survival Rates of Bovine IVM/IVF Embryos after Vitrification (Trehalose 와 당첨가가 우 체외 수정란의 초자화 동결에 미치는 영향)

  • 양부근;김준국;정희태;박춘근;김종복;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.4
    • /
    • pp.307-317
    • /
    • 1998
  • This study was to investigate the vitrification method for cryopreservation technique of bovine in vitro fertilization(IVF) embryos. The morphological appearance and viability following vitrification of IVF bovine blastocysts and expanded blastocysts were examined. Embryos obtained 6, 7, 8 or 9 days after IVF were vitrified in both 40% ethylene glycoI(EG) plus 0.3M trehalose and 20% polyvinylpyrrolidone(PVP) in DPBS(ETP, Exp. 1) and ETP solution added 0.375M dextrose (ETPD, Exp. 2). The viability of Days 6, 7, 8 and 9 vitrified /thawed embryos at 24∼48 h culture after thawing was 11.9%, 19.8%, 23.4% and 15.3% in ETP(Exp. 1), and 34.6%, 54.5%, 37.9% and 13.0% in ETPD(Exp. 2), respectively. The viability of vitrified embryos produced from the culture days after IVF did not differ in Exp. 1, but significantly differ in Exp. 2(P<0.05). The viability of blastocysts and expanded blastocysts significantly differed(P<0.05) in 15.2% and 23.3%(Exp. 1), and 25.0% and 45.8%(Exp. 2). The result of Exp. 1 was similar to that of Exp. 2 on the viability of embryo according to developmental stages, but ETP solution plus sugar(dextrose) was increased the viability of vitrified embryos. In Experiment 3, The viability of vitrified embryos was not different between 12% and 20% PVP concentrations in ETP solution according to culture days or developmental stages. To investigate the effect of addition of sugar, two type of carbohydrates and a mixture of cryoprotectants for vitrification on the survival of bovine IVF embryos, bovine Days 7 to 9 blastocysts and expanded blastocysts were cryopreserved in either 20% glycerol plus 20% EG, 0.375M sucrose and 0.375M dextrose (GESD, Exp. 4) or 20% glycerol plus 20% EG, 0.3M trehalose and 20% PVP(GETP, Exp. 5) in DPBS. Survival rates of Day 7, 8 and 9 embryos at 24∼48h culture after thawing were 71.4%, 94.6% and 40.5% in GESD, and 59.5%, 81.5% and 62.5% in GETP, respectively. Hatching rates of Day 7, 8 and 9 embryos after thawing were 28.6%, 35.1% and 16.2% in GESD, and 27.0%, 33.3% and 18.8% in GETP, respectively. These results indicates that a mixture of cryoprotectants(glycerol and EG) and addition of sugar can improve the survival rates of the bovine IVF embryos(Day 7 or 8) vitrified, and the expanded blastocyst embryos are more suitable for vitrification than early blastocysts stage.

  • PDF

Production of In vitro Fertilized Bovine Embryos and Calves by Ultrasound-guided Ovum Pick-up in Holstein and Hanwoo (초음파 유도 난포란 채란에 의한 젖소 및 한우의 체외수정란과 송아지 생산)

  • 조성근
    • Journal of Embryo Transfer
    • /
    • v.14 no.2
    • /
    • pp.121-129
    • /
    • 1999
  • The objective of this study was to produce calves by transfer of embryos derived from slaughter house(SHD) and ultrasound-guided ovum pick-up (OPU). At 60 hrs after injection of 400 mg FSH dissolved in 25% polyvinylpyrrolidone(PVP) by single dose, ultrasound-guided follicular oocyte aspiration was ferformed. Day-7 and day-8 blastocysts produced by in vitro maturation (IVM), fertilization (IVF) and culture(IVC) of the oocytes derived from SHD and OPU were nonsurgically transferred into recipients. The results obtained were as follows. The cleavage rate and the development rate to blastocysts were not significantly (P<0.05) different between the oocytes obtained by SHD (72.9% vs. 34.1%) and OPU (75.9% vs. 38.4%). The oocyte recovery rate from the number of follicles by ultrasound-guided aspiration were not significantly (P<0.05) different between Holstein (61.7%) and Hanwoo (60.1%), but the rate of oocytes useful for IVF was significantly (P<0.05) higher in Hanwoo (69.3%) than Holstein (59.6%). The cleavage rate and the development rate to blastocysts was not significantly (P<0.05) different between Holstein (74.9% vs. 39.2%) and recipients on day 8 of estrus cycle resulted in 13 pregnancies (34.2%). One of them was sacrificed during gestation period due to mastitis and another was aborted spontaneous. The resulting 14 calves were morphologically normal at birth. Seventy eight fresh OPU-IVF embryos were transferred into 21 recipients on day 8 of estrus cycles, resulting in pregnancy of 12 recipients (41.4%). Two of them were sacrificed during gestation period due to mastitis and the other two were aborted. Nevertheless, the 11 OPU-calves have been born normally.

  • PDF

Effect of Various Supplements on Embryo Development and Quality of Bovine Embryos during In Vitro Maturation (한우 난포란의 체외성숙 시 여러 가지 첨가물이 배 발생과 품질에 미치는 영향)

  • Park Hum-Dae;Jang Mi-Jin;Park Yong-Soo
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.21-26
    • /
    • 2006
  • This study was examined the effects of concentrations of polyvinylpyrrolidone(PVP) and supplementation of EGF, cysteine and PVP during in vitro maturation on the development of bovine embryos. In experiment 1, 0.1 to 3.0% PVP was supplemented to IVM medium before IVF. The development rates to the blastocyst stage was significantly higher in 0.5% PVP group than 3.0% PVP group (P<0.05). In experiment 2, EGF, rysteine and PVP were supplemented to IVM medium. The hight cleavage rate was obtained from cysteine group, but blastocyst formation rates did not differ among groups. The highest total cell number and inner cell mass (ICM) cell number were observed in cysteine group. In PVP group, ICM cell number was significantly low than those of cysteine and control groups (P<0.05). After embryo transfer, pregnancy rate was significantly low in PVP group compared to other groups (P<0.05). These results indicate that the supplementation of PVP in IVM medium support the embryo development, but has a deteriorate effect on the blastocyst quality.

Effects of Transport Duration on Viability of In Vitro Produced Korean Native Cattle Embryos (한우 체외수정란의 이동 소요시간이 생존율에 미치는 영향)

  • 박희성
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.307-313
    • /
    • 1997
  • Experiments were conducted to assess the effect of quality and viability of bovine blastocysts derived from in-vitro culture(IVC) of in vitro matured and fertilized(IVM-IVF) oocytes during their transport 2 hours. Follicular oocytes were collected form ovaries obtained at a slaughterhouse and were cultured for 24 hours in TCM-199. The IVM oocytes were fertilized in vitro with caudal epididymis spermatozoa. Fertilized oocytes were cultured for 7 to 9 days, and embryos that developed to the blastocyst stage were used for the experiment. The blastocysts, packed in straws with storage medium that consisted TCM-199 with HEPES equilibratd in air and supplemented with 10% FCS were transported at 39~(2.0 h). The quality of blastocysts was assessed and ranked as A(excel-lent), B(Good), fair or poor after transportation. The percentages of A and B grade blastocysts after transport duration for < 1 hours(97.7%) were similar to the result from transport duration for 1~2 hours (92.9%) and 2~3 hours(89.6%), but significantly(P<0.05) higher than transpot duration for 3~4 hours(76.3%). The percentages of A and B grade blastocysts after transport duration for two hours from developed blastocyst at 7day(100%) and 8day(85.0%) were higher 9day(96.6%) and >9day (40.0%). And early to expanded blastocyst produced in vitro were transferred to recipient cow by additional embryos at 7 and 8th day after AI. Three of them were pregnant to term and produced four twin calves, and two calves was premature birth. The gestation lengths of male to female and female to female twin were 282 and 281 days, respectively. And birth weight of twin calves were male to female(22.Skg) and female to female twin(20.3Okg), respectively.

  • PDF