• Title/Summary/Keyword: bounded uncertainty

Search Result 113, Processing Time 0.026 seconds

Technology Risk Management in the Post-catchup Innovation System (탈(脫)추격형 혁신체제에서의 기술 위험 관리)

  • Seong, Ji-Eun;Jung, Byung-Kul
    • Journal of Science and Technology Studies
    • /
    • v.7 no.1
    • /
    • pp.33-66
    • /
    • 2007
  • In the post-catchup era, the probability of technology risk are growing according to technology innovation activities with high uncertainty are increasing. Risk acceptance and management are appearing as a more important policy issue. This paper examines the technology risk as a political and social sight and the character of technological risk in the post-catchup era. In the post-catchup, new technology and policy are more undergone trial and err. In particular, we need new approach and policy countermeasures to cope with risky environment and overcome catchup legacy. Accordingly, Korea risk management is needed reshaping of risk management system, increment of risk communication, risk management according to technology type, precautionary approach, bounded trial and err strategy, knowledge accumulation and learning reinforcement.

  • PDF

Interval finite element analysis of masonry-infilled walls

  • Erdolen, Ayse;Doran, Bilge
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.73-84
    • /
    • 2012
  • This paper strongly addresses to the problem of the mechanical systems in which parameters are uncertain and bounded. Interval calculation is used to find sharp bounds of the structural parameters for infilled frame system modeled with finite element method. Infill walls are generally treated as non-structural elements considerably to improve the lateral stiffness, strength and ductility of the structure together with the frame elements. Because of their complex nature, they are often neglected in the analytical model of building structures. However, in seismic design, ignoring the effect of infill wall in a numerical model does not accurately simulate the physical behavior. In this context, there are still some uncertainties in mechanical and also geometrical properties in the analysis and design procedure of infill walls. Structural uncertainties can be studied with a finite element formulation to determine sharp bounds of the structural parameters such as wall thickness and Young's modulus. In order to accomplish this sharp solution as much as possible, interval finite element approach can be considered, too. The structural parameters can be considered as interval variables by using the interval number, thus the structural stiffness matrix may be divided into the product of two parts which correspond to the interval values and the deterministic value.

An iterative learning and adaptive control scheme for a class of uncertain systems

  • Kuc, Tae-Yong;Lee, Jin-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.963-968
    • /
    • 1990
  • An iterative learning control scheme for tracking control of a class of uncertain nonlinear systems is presented. By introducing a model reference adaptive controller in the learning control structure, it is possible to achieve zero tracking of unknown system even when the upperbound of uncertainty in system dynamics is not known apriori. The adaptive controller pull the state of the system to the state of reference model via control gain adaptation at each iteration, while the learning controller attracts the model state to the desired one by synthesizing a suitable control input along with iteration numbers. In the controller role transition from the adaptive to the learning controller takes place in gradually as learning proceeds. Another feature of this control scheme is that robustness to bounded input disturbances is guaranteed by the linear controller in the feedback loop of the learning control scheme. In addition, since the proposed controller does not require any knowledge of the dynamic parameters of the system, it is flexible under uncertain environments. With these facts, computational easiness makes the learning scheme more feasible. Computer simulation results for the dynamic control of a two-axis robot manipulator shows a good performance of the scheme in relatively high speed operation of trajectory tracking.

  • PDF

Robust Cooperative Relay Beamforming Design for Security

  • Gong, Xiangwu;Dong, Feihong;Li, Hongjun;Shao, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4483-4501
    • /
    • 2015
  • In this paper, we investigate a security transmission scheme at the physical layer for cooperative wireless relay networks in the presence of a passive eavesdropper. While the security scheme has been previously investigated with perfect channel state information(CSI) in the presence of a passive eavesdropper, this paper focuses on researching the robust cooperative relay beamforming mechanism for wireless relay networks which makes use of artificial noise (AN) to confuse the eavesdropper and increase its uncertainty about the source message. The transmit power used for AN is maximized to degrade the signal-to-interference-plus-noise-ratio (SINR) level at the eavesdropper, while satisfying the individual power constraint of each relay node and worst-case SINR constraint at the desired receiver under a bounded spherical region for the norm of the CSI error vector from the relays to the destination. Cooperative beamforming weight vector in the security scheme can be obtained by using S-Procedure and rank relaxation techniques. The benefit of the proposed scheme is showed in simulation results.

Nonlinear Attitude Control for Uncertain Quad-rotors Using a Global Approximation-Free Control Scheme (GAFC 비선형 제어기법을 적용한 쿼드로터의 자세 및 고도제어)

  • Kim, Young-Ouk;Park, Seong-Yong;Leeghim, Henzeh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.779-787
    • /
    • 2016
  • A nonlinear control law for the quad-rotor of a low-complexity, global approximation-free from system uncertainties and external disturbances are described in this paper. The control law guarantees convergence to a small bounded error using a prescribed performance function. The stability of the proposed nonlinear control system is also proven by the Lyapunov stability theorem. The advantage of this technique is that it has a simpler form than any other nonlinear compensators and is applicable to any nonlinear systems without precise knowledge of the systems. In this paper, the proposed approach is applied to attitude/altitude control of a quad-rotor. Numerical simulations are performed to investigate the proposed nonlinear attitude control law by applying it to an uncertain quadcopter system with external disturbances.

Robust Stability Analysis and Design of Fuzzy Model Based Feedback Linearization Control Systems (퍼지 모델 기반 피드백 선형화 제어 시스템의 강인 안정성 해석과 설계)

  • 박창우;이종배;김영욱;성하경
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.79-90
    • /
    • 2004
  • Systematical robust stability analysis and design scheme for the feedback linearization control systems via fuzzy modeling are proposed. It is considered that uncertainty and disturbances are included in the Takagi-Sugeno fuzzy models representing the nonlinear plants. Robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions and by converting the analysis and design problems into the linear matrix inequality optimization, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

Robust Transmission Waveform Design for Distributed Multiple-Radar Systems Based on Low Probability of Intercept

  • Shi, Chenguang;Wang, Fei;Sellathurai, Mathini;Zhou, Jianjiang;Zhang, Huan
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.70-80
    • /
    • 2016
  • This paper addresses the problem of robust waveform design for distributed multiple-radar systems (DMRSs) based on low probability of intercept (LPI), where signal-to-interference-plus-noise ratio (SINR) and mutual information (MI) are utilized as the metrics for target detection and information extraction, respectively. Recognizing that a precise characterization of a target spectrum is impossible to capture in practice, we consider that a target spectrum lies in an uncertainty class bounded by known upper and lower bounds. Based on this model, robust waveform design approaches for the DMRS are developed based on LPI-SINR and LPI-MI criteria, where the total transmitting energy is minimized for a given system performance. Numerical results show the effectiveness of the proposed approaches.

Robust DTC Control of Doubly-Fed Induction Machines Based on Input-Output Feedback Linearization Using Recurrent Neural Networks

  • Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Fai, Jawad
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.719-725
    • /
    • 2011
  • This paper describes a novel Direct Torque Control (DTC) method for adjustable speed Doubly-Fed Induction Machine (DFIM) drives which is supplied by a two-level Space Vector Modulation (SVM) voltage source inverter (DTC-SVM) in the rotor circuit. The inverter reference voltage vector is obtained by using input-output feedback linearization control and a DFIM model in the stator a-b axes reference frame with stator currents and rotor fluxes as state variables. Moreover, to make this nonlinear controller stable and robust to most varying electrical parameter uncertainties, a two layer recurrent Artificial Neural Network (ANN) is used to estimate a certain function which shows the machine lumped uncertainty. The overall system stability is proved by the Lyapunov theorem. It is shown that the torque and flux tracking errors as well as the updated weights of the ANN are uniformly ultimately bounded. Finally, effectiveness of the proposed control approach is shown by computer simulation results.

Design of a Neural Chip for Classifying Iris Flowers based on CMOS Analog Neurons

  • Choi, Yoon-Jin;Lee, Eun-Min;Jeong, Hang-Geun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.284-288
    • /
    • 2019
  • A calibration-free analog neuron circuit is proposed as a viable alternative to the power hungry digital neuron in implementing a deep neural network. The conventional analog neuron requires calibrations because a voltage-mode link is used between the soma and the synapse, which results in significant uncertainty in terms of current mapping. In this work, a current-mode link is used to establish a robust link between the soma and the synapse against the variations in the process and interconnection impedances. The increased hardware owing to the adoption of the current-mode link is estimated to be manageable because the number of neurons in each layer of the neural network is typically bounded. To demonstrate the utility of the proposed analog neuron, a simple neural network with $4{\times}7{\times}3$ architecture has been designed for classifying iris flowers. The chip is now under fabrication in 0.35 mm CMOS technology. Thus, the proposed true current-mode analog neuron can be a practical option in realizing power-efficient neural networks for edge computing.

Path following of a surface ship sailing in restricted waters under wind effect using robust H guaranteed cost control

  • Wang, Jian-qin;Zou, Zao-jian;Wang, Tao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.606-623
    • /
    • 2019
  • The path following problem of a ship sailing in restricted waters under wind effect is investigated based on Robust $H_{\infty}$ Guaranteed Cost Control (RHGCC). To design the controller, the ship maneuvering motion is modeled as a linear uncertain system with norm-bounded time-varying parametric uncertainty. To counteract the bank and wind effects, the integral of path error is augmented to the original system. Based on the extended linear uncertain system, sufficient conditions for existence of the RHGCC are given. To obtain an optimal robust $H_{\infty}$ guaranteed cost control law, a convex optimization problem with Linear Matrix Inequality (LMI) constraints is formulated, which minimizes the guaranteed cost of the close-loop system and mitigates the effect of external disturbance on the performance output. Numerical simulations have confirmed the effectiveness and robustness of the proposed control strategy for the path following goal of a ship sailing in restricted waters under wind effect.