• 제목/요약/키워드: bounded energy finite solution

검색결과 3건 처리시간 0.016초

ROUGH ISOMETRY AND THE SPACE OF BOUNDED ENERGY FINITE SOLUTIONS OF THE SCHRODINGER OPERATOR ON GRAPHS

  • Kim, Seok-Woo;Lee, Yong-Hah;Yoon, Joung-Hahn
    • 대한수학회논문집
    • /
    • 제25권4호
    • /
    • pp.609-614
    • /
    • 2010
  • We prove that if graphs of bounded degree are roughly isometric to each other, then the spaces of bounded energy finite solutions of the Schr$\ddot{o}$dinger operator on the graphs are isomorphic to each other. This is a direct generalization of the results of Soardi [5] and of Lee [3].

ENERGY FINITE SOLUTIONS OF ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS

  • Kim, Seok-Woo;Lee, Yong-Hah
    • 대한수학회지
    • /
    • 제45권3호
    • /
    • pp.807-819
    • /
    • 2008
  • We prove that for any continuous function f on the s-harmonic (1{\infty})$ boundary of a complete Riemannian manifold M, there exists a solution, which is a limit of a sequence of bounded energy finite solutions in the sense of supremum norm, for a certain elliptic operator A on M whose boundary value at each s-harmonic boundary point coincides with that of f. If $E_1,\;E_2,...,E_{\iota}$ are s-nonparabolic ends of M, then we also prove that there is a one to one correspondence between the set of bounded energy finite solutions for A on M and the Cartesian product of the sets of bounded energy finite solutions for A on $E_i$ which vanish at the boundary ${\partial}E_{\iota}\;for\;{\iota}=1,2,...,{\iota}$

A LIOUVILLE THEOREM OF AN INTEGRAL EQUATION OF THE CHERN-SIMONS-HIGGS TYPE

  • Chen, Qinghua;Li, Yayun;Ma, Mengfan
    • 대한수학회지
    • /
    • 제58권6호
    • /
    • pp.1327-1345
    • /
    • 2021
  • In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation of Chern-Simons-Higgs type $$u(x)=\vec{\;l\;}+C_{\ast}{{\displaystyle\smashmargin{2}{\int\nolimits_{\mathbb{R}^n}}}\;{\frac{(1-{\mid}u(y){\mid}^2){\mid}u(y){\mid}^2u(y)-\frac{1}{2}(1-{\mid}u(y){\mid}^2)^2u(y)}{{\mid}x-y{\mid}^{n-{\alpha}}}}dy.$$ Here u : ℝn → ℝk is a bounded, uniformly continuous function with k ⩾ 1 and 0 < α < n, $\vec{\;l\;}{\in}\mathbb{R}^k$ is a constant vector, and C* is a real constant. We prove that ${\mid}\vec{\;l\;}{\mid}{\in}\{0,\frac{\sqrt{3}}{3},1\}$ if u is the finite energy solution. Further, if u is also a differentiable solution, then we give a Liouville type theorem, that is either $u{\rightarrow}\vec{\;l\;}$ with ${\mid}\vec{\;l\;}{\mid}=\frac{\sqrt{3}}{3}$, when |x| → ∞, or $u{\equiv}\vec{\;l\;}$, where ${\mid}\vec{\;l\;}{\mid}{\in}\{0,1\}$.