• Title/Summary/Keyword: boundary scan

Search Result 117, Processing Time 0.025 seconds

A Real-Time Stereoscopic Image Conversion Method Based on A Single Frame (단일 프레임 기반의 실시간 입체 영상 변환 방법)

  • Jung Jae-Sung;Cho Hwa-Hyun;Choi Myung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.1 s.307
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, a real-time stereoscopic image conversion method using a single frame from a 2-D image is proposed. The Stereoscopic image is generated by creating depth map using vortical position information and parallax processing. For a real-time processing of stereoscopic conversion and reduction of hardware complexity, it uses image sampling, object segmentation by standardizing luminance and depth map generation by boundary scan. The proposed method offers realistic 3-D effect regardless of the direction, velocity and scene conversion of the 2-D image. It offers effective stereoscopic conversion using images suitable conditions assumed in this paper such as recorded image at long distance, landscape and panorama photo because it creates different depth sense using vertical position information from a single frame. The proposed method can be applied to still image because it uses a single frame from a 2-D image. The proposed method has been evaluated using visual test and APD for comparing the stereoscopic image of the proposed method with that of MTD. It is confirmed that stereoscopic images conversed by the proposed method offers 3-D effect regardless of the direction and velocity of the 2-D image.

Place Assimilation in OT

  • Lee, Sechang
    • Proceedings of the KSPS conference
    • /
    • 1996.10a
    • /
    • pp.109-116
    • /
    • 1996
  • In this paper, I would like to explore the possibility that the nature of place assimilation can be captured in terms of the OCP within the Optimality Theory (Mccarthy & Prince 1999. 1995; Prince & Smolensky 1993). In derivational models, each assimilatory process would be expressed through a different autosegmental rule. However, what any such model misses is a clear generalization that all of those processes have the effect of avoiding a configuration in which two consonantal place nodes are adjacent across a syllable boundary, as illustrated in (1):(equation omitted) In a derivational model, it is a coincidence that across languages there are changes that have the result of modifying a structure of the form (1a) into the other structure that does not have adjacent consonantal place nodes (1b). OT allows us to express this effect through a constraint given in (2) that forbids adjacent place nodes: (2) OCP(PL): Adjacent place nodes are prohibited. At this point, then, a question arises as to how consonantal and vocalic place nodes are formally distinguished in the output for the purpose of applying the OCP(PL). Besides, the OCP(PL) would affect equally complex onsets and codas as well as coda-onset clusters in languages that have them such as English. To remedy this problem, following Mccarthy (1994), I assume that the canonical markedness constraint is a prohibition defined over no more than two segments, $\alpha$ and $\beta$: that is, $^{*}\{{\alpha, {\;}{\beta{\}$ with appropriate conditions imposed on $\alpha$ and $\beta$. I propose the OCP(PL) again in the following format (3) OCP(PL) (table omitted) $\alpha$ and $\beta$ are the target and the trigger of place assimilation, respectively. The '*' is a reminder that, in this format, constraints specify negative targets or prohibited configurations. Any structure matching the specifications is in violation of this constraint. Now, in correspondence terms, the meaning of the OCP(PL) is this: the constraint is violated if a consonantal place $\alpha$ is immediately followed by a consonantal place $\bebt$ in surface. One advantage of this format is that the OCP(PL) would also be invoked in dealing with place assimilation within complex coda (e.g., sink [si(equation omitted)k]): we can make the constraint scan the consonantal clusters only, excluding any intervening vowels. Finally, the onset clusters typically do not undergo place assimilation. I propose that the onsets be protected by certain constraint which ensures that the coda, not the onset loses the place feature.

  • PDF

High Performance Object Recognition with Application of the Size and Rotational Invariant Feature of the Fourier Descriptor to the 3D Information of Edges (푸리에 표현자의 크기와 회전 불변 특징을 에지에 대한 3차원 정보에 응용한 고효율의 물체 인식)

  • Wang, Shi;Chen, Hongxin;I, Jun-Ho;Lin, Haiping;Kim, Hyong-Suk;Kim, Jong-Man
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.170-178
    • /
    • 2008
  • A high performance object recognition algorithm using Fourier description of the 3D information of the objects is proposed. Object boundaries contain sufficient information for recognition in most of objects. However, it is not well utilized as the key solution of the object recognition since obtaining the accurate boundary information is not easy. Also, object boundaries vary highly depending on the size or orientation of object. The proposed object recognition algorithm is based on 1) the accurate object boundaries extracted from the 3D shape which is obtained by the laser scan device, and 2) reduction of the required database using the size and rotational invariant feature of the Fourier Descriptor. Such Fourier information is compared with the database and the recognition is done by selecting the best matching object. The experiments have been done on the rich database of MPEG 7 Part B.

Cancellation of MRI Artifact due to Rotational Motion (회전운동에 기인한 MRI 아티팩트의 제거)

  • 김응규
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.411-419
    • /
    • 2004
  • When the imaging object rotates in image plane during MRI scan, its rotation causes phase error and non-uniform sampling to MRI signal. The model of the problem including phase error non-uniform sampling of MRI signal showed that the MRI signals corrupted by rotations about an arbitrary center and the origin in image plane are different in their phases. Therefore the following methods are presented to improve the quality of the MR image which includes the artifact. The first, assuming that the angle of 2-D rotational motion is already known and the position of 2-D rotational center is unknown, an algorithm to correct the artifact which is based on the phase correction is presented. The second, in case of 2-D rotational motion with unknown rotational center and unknown rotational angle, an algorithm is presented to correct the MRI artifact. At this case, the energy of an ideal MR image is minimum outside the boundary of the imaging object to estimate unknown motion parameters and the measured energy increases when the imaging object has an rotation. By using this property, an evaluation function is defined to estimate unknown values of rotational angle at each phase encoding step. Finally, the effectiveness of this presented techniques is shown by using a phantom image with simulated motion and a real image with 2-D translational shift and rotation.

Three-dimensional Model Generation for Active Shape Model Algorithm (능동모양모델 알고리듬을 위한 삼차원 모델생성 기법)

  • Lim, Seong-Jae;Jeong, Yong-Yeon;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.28-35
    • /
    • 2006
  • Statistical models of shape variability based on active shape models (ASMs) have been successfully utilized to perform segmentation and recognition tasks in two-dimensional (2D) images. Three-dimensional (3D) model-based approaches are more promising than 2D approaches since they can bring in more realistic shape constraints for recognizing and delineating the object boundary. For 3D model-based approaches, however, building the 3D shape model from a training set of segmented instances of an object is a major challenge and currently it remains an open problem in building the 3D shape model, one essential step is to generate a point distribution model (PDM). Corresponding landmarks must be selected in all1 training shapes for generating PDM, and manual determination of landmark correspondences is very time-consuming, tedious, and error-prone. In this paper, we propose a novel automatic method for generating 3D statistical shape models. Given a set of training 3D shapes, we generate a 3D model by 1) building the mean shape fro]n the distance transform of the training shapes, 2) utilizing a tetrahedron method for automatically selecting landmarks on the mean shape, and 3) subsequently propagating these landmarks to each training shape via a distance labeling method. In this paper, we investigate the accuracy and compactness of the 3D model for the human liver built from 50 segmented individual CT data sets. The proposed method is very general without such assumptions and can be applied to other data sets.

A Study on Matched Errors between PET and CT Images in PET/CT Examination According to Breathing Protocols (PET/CT 검사에서 호흡법에 따른 PET과 CT 영상의 정합오차)

  • Kim, Sang Un;Kwak, Dong Woo;Park, Hyeon Soo;Bang, Seong Ae;Park, Yeong Jae;LEE, In Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.7-10
    • /
    • 2013
  • Purpose : This study evaluated the effects of breathing protocols on matching results of PET and CT images using two breathing protocols such as free breathing and acquisition in holding the breathing after the normal expiration in acquiring CT images. Materials and Methods: Whole body FDG PET and CT images of 200 patients (mean age: 58 (range 20~84), 103 males and 97 females) using Discovery VCT (GE Healthcare, Milwaukee, USA). When taking CT images, subjects were asked to breathe freely (free breathing, n=100) or hold the breathing after the normal expiration (Hold, n=100). In the whole body image coronal section where PET and CT were matched, the matched error of the boundary between diaphragm and liver was measured in length. The matched errors were compared according to breathing protocol by age, sex and disease. The verification of statistical significance was made by SPSS 15.0 (SPSS Inc., Chicago, IL, USA) via one way ANOVA. Results: The matched error in all was 0.87 mm. According to breathing protocol, there was no significant difference in matched error as1.01 mm in free breathing and as 0.73 mm in hold breathing (p=.688). The matched error according to sex did not show significant difference as 1.08 mm of males, and 0.93 mm of females in free breathing (p=.517). In hold breathing, there was no significant difference as 0.79 mm of males and 0.66 mm of females (p=.738). There was no significant difference in matched error by age between free breathing and hold breathing (free breathing (p=.728), hold (p=.465). There was no significant difference in matched error by disease between free breathing and hold breathing (free breathing (p=.197), hold (p=.518) Conclusion: The difference in matched error between free breathing and hold breathing was less than 5 mm at 99%. There was no statistically significant difference in matched error by breathing protocol, age and disease. It was proved that there was no difference in matched error between PET and CT images according to breathing protocol during PET/CT scan.

  • PDF

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND DEFORMATION IN MANDIBLE ACCORDING TO THE POSITION OF PONTIC IN TWO IMPLANTS SUPPORTED THREE-UNIT FIXED PARTIAL DENTURE (두 개의 임플란트를 이용한 3본 고정성 국소의치에서 가공치 위치에 따른 하악골에서의 응력 분포 및 변형에 관한 삼차원 유한요소법적 연구)

  • Kim, Dong-Su;Kim, Il-Kyu;Jang, Keum-Soo;Park, Tae-Hwan;Kim, Kyu-Nam;Son, Choong-Yul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.2
    • /
    • pp.166-179
    • /
    • 2008
  • Excessive concentration of stress which is occurred in occlusion around the implant in case of the implant supported fixed partial denture has been known to be the main cause of the crestal bone destruction. Therefore, it is essential to evaluate the stress analysis on supporting tissue to get higher success rates of implant. The purpose of this study was to evaluate the effects of stress distribution and deformation in 3 different types of three-unit fixed partial denture sup-ported by two implants, using a three dimensional finite element analysis in a three dimensional model of a whole mandible. A mechanical model of an edentulous mandible was generated from 3D scan, assuming two implants were placed in the left premolars area. According to the position of pontic, the experiments groups were divided into three types. Type I had a pontic in the middle position between two implants, type II in the anterior posi-tion, and type III in the posterior position. A 100-N axial load was applied to sites such as the central fossa of anterior and posterior implant abutment, central fossa of pontic, the connector of pontic or the connector between two implants, the mandibular boundary conditions were modeled considering the real geometry of its four-masticatory muscular supporting system. The results obtained from this study were as follows; 1. The mandible deformed in a way that the condyles converged medially in all types under muscular actions. In comparison with types, the deformations in the type II and type III were greater by 2-2.5 times than in the type I regardless of the loading location. 2. The values of von Mises stresses in cortical and cancellous bone were relatively stable in all types, but slightly increased as the loading position was changed more posteriorly. 3. In comparison with type I, the values of von Mises stress in the implant increased by 73% in Type II and by 77% in Type III when the load was applied anterior and posterior respectively, but when the load was applied to the middle, the values were similar in all types. 4. When the load was applied to the centric fossa of pontic, the values of von Mises stress were nearly $30{\sim}35%$ higher in the type III than type I or II in the cortical and cancellous bone. Also, in the implant, the values of von Mises stress of the type II or III were $160{\sim}170%$ higher than in the type I. 5. When the load was applied to the centric fossa of implant abutment, the values of von Mises stress in the cortical and cancellous bone were relatively $20{\sim}25%$ higher in the type III than in the other types, but in the implant they were 40-45% higher in the type I or II than in the type III. According to the results of this study, musculature modeling is important to the finite element analysis for stress distribution and deformation as the muscular action causes stress concentration. And the type I model is the most stable from a view of biomechanics. Type II is also a clinically accept-able design when the implant is stiff sufficiently and mandibular deformation is considered. Considering the high values of von Mises stress in the cortical bone, type III is not thought as an useful design.