• 제목/요약/키워드: boundary resistance

검색결과 468건 처리시간 0.028초

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • 제3권5호
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

Device and Piezoelectric Characteristics of Pb(Mn1/3Sb2/3) O3-PZT Ceramics for Piezoelectric Transformer

  • Sohn, Joon-Ho;Heo, Soo-Jeong;Sohn, Jeong-Ho;Lee, Joon-Hyung;Jung, Woo-Hwan;Kim, Dong-Bum;Cho, Sang-Hee
    • The Korean Journal of Ceramics
    • /
    • 제5권2호
    • /
    • pp.171-177
    • /
    • 1999
  • In the $(Pb_{1-x}M_x)[(Mn_{1/3}Sb_{2/3})_{0.05}Zr_yTi_{0.95-y}]O_3$ system, where M=Ca and Sr, the piezoelectric properties were evaluated to examine the possibility of application to piezoelectric transformer. A Rosen-type piezoelectric transformer was formed, then the electrical properties of voltage step-up ratio, frequency characteristics etc. were analysed. The morphotropic phase boundary was determined to be y=0.475 in $Pb[(Mn_{1/3}Sb_{2/3})_{0.05}Zr_yTi_{0.95-y}]O_3$ system and the piezoelectric properties of this composition was kp=0.59, Qm=1600 and $\varepsilon_r$=1150. Moreover, when 1-2 mol% of Sr are substituted, enhanced piezoelectric properties of kp=0.61, Qm=1600 and $\varepsilon_r$=1400 were shown. The temperature rising (ΔT) of a piezoelectric transformer with $Pb[Mn_{1/3}Sb_{2/3})_{0.05}Zr_{0.475}Ti_{0.475})]O_3 $ composition was $10^{\circ}C$, and the voltage step-up ratio was 500 when the output voltage was 4000V, whereas the ΔT was below $3^{\circ}C$ and the resonant frequency variation ($\Delta f_r$) as a function of load resistance was below 5% when the output voltage was 2000 V. These characteristics are superior to the properties of materials, which were substituted by Ca or without substitution.

  • PDF

임플랜트의 체결방식에 따른 초기조임력에 의한 응력분포 및 전하중에 관한 연구 (THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND PRELOAD OF DIFFERENT CONNECTION TYPES IMPLANT WITH INITIAL CLAMPING)

  • 이범현;전흥재;이수홍;한종현
    • 대한치과보철학회지
    • /
    • 제44권2호
    • /
    • pp.197-206
    • /
    • 2006
  • Statement of problem: One of common problems associated with single teeth dental implant prosthetic is the loosening of screws that retain the implants. Purpose: The maintenance of screw joint stability is considered a function of the preload achieved in the screw when the suggested initial tightening torque is applied. The purpose of this study was to investigate acquired preload after initial clamping torque for estimating screw joint stability. Material and methods: A comparative study on the effect of initial clamping of two types of implant systems with different connections was conducted Three dimensional non-linear finite element analysis is adopted to compare the characteristics of screw preloads and stress distributions between two different types of implant systems composed with abutment, screw, and fixture under the same loading and boundary conditions. Results: 1. When the initial clamping torque of 32Ncm was applied to the implant systems, all types of implants generated the maximum effective stress at the first helix region of screw. 2. Morse taper connection types of implants generate lower stress distributions compared to those by butt joint connection types or implants due to large contact surface between abutment and fixture. 3. The internal types of implant systems with friction grip type implant systems have higher resistance to screw loosening than that of the external types of implant systems since the internal types of implant systems generated larger preload than that generated by the external types for the same tightening moments.

레저선박의 표면조도 간격변화에 따른 유동해석에 관한 연구 (A Study on the Flow Analysis according to the change of Surface Roughness Gap in the Leisure Ship)

  • 오우준;조대환;이동섭;손창배;이경우
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 추계학술대회
    • /
    • pp.243-244
    • /
    • 2009
  • 선박의 표면은 소형선박에서부터 대형까지 매끄럽지 않고 어느 정도의 표면조도(surface roughness)를 가지고 있다. 표면조도는 표면저항과 열전달을 증가시키기 때문에 선박의 설계시 고려해야 될 중요한 설계인자 중 하나이다. 때문에 표면조도에 따른 주위유동에 관한 연구와 조도변화에 따른 유동 및 난류에 대한 연구가 지속적으로 이루어지고 있다. 선박의 표면조도는 선박에서 뿐만 아니라 기계나 항공까지 광범위하게 적용이 가능하며 가용 분야 또한 매우 넓다. 본 연구에서는 레저선박의 표면조도 간격변화에 따른 표면유동에 어떠한 영향을 끼치며 표면조도 영역에 따른 경계층에 대한 실험적 연구를 수행하였다.

  • PDF

PVD증착용 흡착인히비터의 영향에 따른 제작막의 특성 비교 (Characteristics Comparison of Prepared Films According to Influence of Adsorption Inhibitor in the Condition of Deposition)

  • 이찬식;윤용섭;권식철;김기준;이명훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.67-67
    • /
    • 2001
  • The structure zone model has been used to provide an overview of the relationship between the microstructure of the films deposited by PVD and the most prominent deposition condition.s. B.AMovchan and AV.Demchishin have proposed it firstls such model. They concluded that the general features of the resulting structures could be correlated into three zones depending on $T/T_m$. Here T m is the melting point of the coating material and T is the substrate temperature in kelvines. Zone 1 ($T/Tm_) is dominated by tapered macrograins with domed tops, zone 2 ($O.3) by columnar grains with denser boundaries and zone 3 ($T/T_m>O.5$) by equiaxed grains formed by recrystallization. J.AThomton has extended this model to include the effect of the sputtering gas pressure and found a fourth zone termed zone T(transition zone) consisting of a dense array of poorly defined fibrous grains. R.Messier found that the zone I-T boundary (fourth zone of Thorton) varies in a fashion similar to the film bias potential as a function of gas pressure. However, there has not nearly enough model for explaining the change in morphology with crystal orientation of the films. The structure zone model only provide an information about the morphology of the deposited film. In general, the nucleation and growth mechanism for granular and fine structure of the deposited films are very complex in an PVD technique because the morphology and orientation depend not only on the substrate temperature but also on the energy of deposition of the atoms or ions, the kinetic mechanism between metal atoms and argon or nitrogen gas, and even on the presence of impurities. In order to clarify these relationship, AI and Mg thin films were prepared on SPCC steel substrates by PVD techniques. The influence of gas pressures and bias voltages on their crystal orientation and morphology of the prepared films were investigated by SEM and XRD, respectively. And the effect of crystal orientation and morphology of the prepared films on corrosion resistance was estimated by measuring polarization curves in 3% NaCI solution.

  • PDF

풍하중이 컨테이너 크레인 안정성에 미치는 영향의 실험적 해석 (The Experimental Analysis of the Effect of Wind Load on the Stability of a Container Crane)

  • 이성욱;심재준;한동섭;한근조;김태형;황규석
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 추계학술대회 논문집
    • /
    • pp.229-234
    • /
    • 2005
  • 본 연구는 75m/s의 풍하중이 컨테이너 크레인에 작용할 때, 풍하중이 50ton급 컨테이너 크레인의 안정성에 미치는 영향을 풍동실험을 통하여 분석하여 컨테이너 크레인의 내풍설계 시 필요한 자료를 제공하기 위해 수행되었다. 풍동실험에 적용된 데이터 수집조건은 상사법칙에 준하여 설정되었으며, 컨테이너 크레인 모형, 풍속 및 시간의 축척률은 각각 1/200, 1/13.3 및 1/15로 하였다. 그리고 실험은 $11.25m^2$의 측정부 단면을 갖는 개방형 대기경계층풍동을 사용하여 수행하였다. 풍향에 따른 컨테이너 크레인의 풍력계수 및 전도모멘트계수가 조사되었으며, 풍하중에 의해 각 지지점에서 발생되는 전도력이 분석되었다.

  • PDF

풍동실험을 이용한 붐 형상 변화에 따른 컨테이너 크레인 구조 안정성 평가에 관한 연구 (A Study on the Estimation of the Structural Stability of a Container Crane according to the Change of the Boom Shape using Wind Tunnel Test)

  • 이성욱;한근조;한동섭;김태형
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 춘계학술대회 및 창립 30주년 심포지엄(논문집)
    • /
    • pp.311-316
    • /
    • 2006
  • 본 연구는 75m/s의 풍하중이 컨테이너 크레인에 작용할 때, 붐 형상 변화에 따라 풍하중이 컨테이너 크레인의 구조적 안정성에 미치는 영향을 풍동실험을 통하여 분석하여 컨테이너 크레인의 내풍설계 시 필요한 자료를 제공하기 위해 수행되었다. 풍동실험에 적용된 데이터 수집조건은 상사법칙에 준하여 설정되었으며, 컨테이너 크레인 모형, 풍속 및 시간의 축척률은 각각 1/200, 1/13.3 및 1/15로 하였다. 그리고 실험은 $11.25m^2$의 측정부 단면을 갖는 개방형 대기경계층풍동을 사용하여 수행하였다. 풍향에 따른 컨테이너 크레인의 풍력계수 및 전도모멘트계수가 조사되었으며, 풍하중에 의해 각 지지점에서 발생되는 전도력이 분석되었다.

  • PDF

Electrical Characterization of Nanoscale $Au/TiO_2$ Schottky Diodes Probed with Conductive Atomic Force Microscopy

  • Lee, Hyunsoo;Van, Trong Nghia;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.290.1-290.1
    • /
    • 2013
  • The electrical characterization of Au islands on TiO2 at nanometer scale (as a Schottky nanodiode) has been studied with conductive atomic force microscopy in ultra-high vacuum. The diverse sizes of the Au islands were formed by using self-assembled patterns on n-type TiO2 semiconductor film using the Langmuir-Blodgett process. Local conductance images showing the current flowing through the TiN coated AFM probe to the surface of the Au islands on TiO2 was simultaneously obtained with topography, while a positive sample bias is applied. The boundary of the Au islands revealed a higher current flow than that of the inner Au islands in current AFM images, with the forward bias presumably due to the surface plasmon resonance. The nanoscale Schottky barrier height of the Au/TiO2 Schottky nanodiode was obtained by fitting the I-V curve to the thermionic emission equation. The local resistance of the Au/TiO2 nanodiode appeared to be higher at the larger Au islands than at the smaller islands. The results suggest that conductive atomic force microscopy can be used to reveal the I-V characterization of metal size dependence and the electrical effects of surface plasmon on a metal-semiconductor Schottky diode at nanometer scale.

  • PDF

Different approaches for numerical modeling of seismic soil-structure interaction: impacts on the seismic response of a simplified reinforced concrete integral bridge

  • Dhar, Sreya;Ozcebe, Ali Guney;Dasgupta, Kaustubh;Petrini, Lorenza;Paolucci, Roberto
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.373-385
    • /
    • 2019
  • In this article, different frequently adopted modeling aspects of linear and nonlinear dynamic soil-structure interaction (SSI) are studied on a pile-supported integral abutment bridge structure using the open-source platform OpenSees (McKenna et al. 2000, Mazzoni et al. 2007, McKenna and Fenves 2008) for a 2D domain. Analyzed approaches are as follows: (i) free field input at the base of fixed base bridge; (ii) SSI input at the base of fixed base bridge; (iii) SSI model with two dimensional quadrilateral soil elements interacting with bridge and incident input motion propagating upwards at model bottom boundary (with and without considering the effect of abutment backfill response); (iv) simplified SSI model by idealizing the interaction between structural and soil elements through nonlinear springs (with and without considering the effect of abutment backfill response). Salient conclusions of this paper include: (i) free-field motions may differ significantly from those computed at the base of the bridge foundations, thus put a significant bias on the inertial component of SSI; (ii) conventional modeling of SSI through series of soil springs and dashpot system seems to stay on the safer side under dynamic conditions when one considers the seismic actions on the structure by considering a fully coupled SSI model; (iii) consideration of abutment-backfill in the SSI model positively affects the general response of the bridge, as a result of large passive resistance that may develop behind the abutments.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.