• Title/Summary/Keyword: boundary characteristics

Search Result 3,207, Processing Time 0.033 seconds

Restoration of 3-Dimensional Surface Based on Binocular Stereo Vision (양안 입체시에 의한 3차원 표면의 복원)

  • Jung, Nam-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2005
  • In this paper, a model of neural circuit was proposed, which abstracts the depth information in two images gotten from right and left retinas. The proposed neural circuit corresponds to binocular stereo vision based on psychologic and physiological knowledge, and we examine a restoration method of three-dimensional surface. In case of drawing a disparity based on characteristics of images, we can not abstract the depth information correctly if resemblant characteristics are repeated on the boundary region of an object. A binocular disparity is decided in a model of neural circuit by abstraction, synthesis, and correction of a disparity. And we propose a method which restores three-dimensional shape by correcting a depth information, and also restores a three-dimensional surface by mapping a left input image on the restored three-dimensional shape. And we confirmed that the computation time for disparity abstraction can be greatly reduced through the simulation.

  • PDF

Combustion Characteristics of Minco Sub-bituminous Coal at Oxy-Fuel Conditions (민코 아역청탄의 순산소 연소특성)

  • Kim, Jae-Kwan;Lee, Hyun-Dong;Jang, Seok-Won;Kim, Sung-Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • New way to effectively capture $CO_2$ in coal fired power plant is the combustion of coal using oxy-fuel technology. Combustion characteristics of Minco sub-bituminous coal at oxy-fuel conditions using TGA and drop tube furnace (DTF) were included activation energy about the char burnout, volatile yield and combustion efficiency of raw coal, the porosity of pyrolyzed char and fusion temperature of by-product ash. TGA result shows that the effect of $CO_2$ on combustion kinetics reduces activation energy by approximately 7 kJ/mol at air oxygen level(21% $O_2$) and decreases the burning time by approximately 16%. The results from DTF indicated similar combustion efficiency under $O_2/CO_2$ and $O_2/N_2$ atmospheres for equivalent $O_2$ concentration whereas high combustion efficiency under $O_2/N_2$ than $O_2/CO_2$ was obtained for high temperature of more than $1,100^{\circ}C$. Overall coal burning rate under $O_2/CO_2$ is decreased due to the lower rate of oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. By-product ash produced under $O_2/CO_2$ and $O_2/N_2$ was similar IDT in irrelevant to $O_2$ concentration and atmospheres gas during the coal combustion.

  • PDF

Modelling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Yoo, Hui-Ryong;Park, Yong-Woo;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.448-448
    • /
    • 2000
  • This paper deals with dynamic behaviour analysis for pipeline inspection gauge (PIG) flow control in natural gas pipeline. The dynamic behaviour of the PIG is depending on the different Pressure between the rear and nose parts, which is generated by injected gas flow behind PIG's tail and expelled gas flow in front of its nose. To analyze the dynamic behaviour characteristics such as gas flow in pipeline, and the PIG's position and velocity, mathematical model is derived as two types of a nonlinear hyperbolic partial differential equation for unsteady flow analysis of the PIG driving and expelled gas, and nonhomogeneous differential equation for dynamic analysis of PIG. The nonlinear equation is solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used when we solve the steady flow equations to get initial flow values and the dynamic equation of PIG. The gas upstream and downstream of PIG are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of PIG with different operational conditions of pipeline.

  • PDF

Wear Characteristics of Polyolester Base Oils Baying different Branch Shapes(I) (서로 다른 모양의 가지사슬을 갖는 폴리올에스터 오일의 마모특성(I))

  • 한두희;마사부미마스꼬
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.109-115
    • /
    • 2001
  • The lubricating performance of 23 kinds of polyol ester base oils 〔POEs〕 having different branch shapes was investigated by using a four ball tribometer under boundary lubrication condition. All the polyol ester base oils used in this study were made up of polyhydric alcohols of two-four valence and normal or branched fatty acids of different carbon number. The wear characteristics of polyol ester base oils are different from those of mineral oil, strongly affected by the branch shapes of fatty acids in their molecles. In particular, the polyol ester base oils having normal fatty acids such as n-octanoic acid, n-nonanoic acid etc. show much better wear performance than POEs having branched fatty acids such as 2-ethylhexanoic acid, 3,5,5-trimethyl hexanoic acid, etc. As the carbon chain length of normal fatty acids, in case of POEs of normal fatty acids, is increased, their wear rate is decreased and, in case of POEs of branched fatty acids, as the degree of branch of branched fatty acids is decreased, their wear rate is decreased. All the wear results of polyol ester base oils could be reasonably explained by comparing cohesive ability among fatty acid molecules in adsorption film by fatty acids obtained as POEs were decomposed.

Quadrotor wake characteristics according to the change of the rotor separation distance (로터 간격에 따른 쿼드로터의 후류특성 변화 연구)

  • Lee, Seungcheol;Chae, Seokbong;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.46-51
    • /
    • 2019
  • Rotor wake interaction must be considered to understand the quadrotor flight, and the rotor separation distance is an important parameter that affects the rotor wake interaction. In this study, the wake characteristics were investigated with varying the rotor separation distance. The velocity field in the rotor wake was measured using digital PIV for hovering mode at Re = 34,000, and the wake boundaries from the inner and outer rotor tips were quantitatively compared with varying the rotor separation distance. The symmetric rotor-tip vortex shedding about the rotor axis was found at a large rotor separation distance. However, the wake boundary became more asymmetric about the rotor axis with decreasing the rotor separation distance. At the minimum rotor separation distance, in particular, a faster vortex decay was observed due to a strong vortex interaction between adjacent rotors.

A Study on the Vibration Characteristics of Symmetry, Asymmetry Laminated Composite Materials by using Time-Average ESPI (시간평균 ESPI를 이용한 대칭.비대칭 적층 복합재료의 진동 특성 비교에 관한 연구)

  • Hong Kyung-Min;Ryu Weon-Jae;Kang Young-Jung;Kang Shin-Jae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.259-260
    • /
    • 2006
  • The ESPI(Electronic Speckle Pattern Interferometry) is a real time, full-field, non-destructive optical measurement technique. In this study, ESPI is proposed for the purpose of vibration analysis for new material, composite material. Composite materials have various complicated characteristics according to the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analysis composite materials. For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. If use Time-Average ESPI, can analyze vibration characteristic of composite material by real time easily. This study manufactured laminated composite of symmetry, asymmetry two kinds that is consisted of CFRP(Carbon Fiber Reinforced Plastics) and shape of test piece is rectangular form.

  • PDF

Modeling and Simulation for PIG with Bypass Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1302-1310
    • /
    • 2001
  • This paper introduces modeling and simulation results for pipeline inspection gauge (PIG) with bypass flow control in natural gas pipeline. The dynamic behaviour of the PIG depends on the different pressure across its body and the bypass flow through it. The system dynamics includes: dynamics of driving gas flow behind the PIG, dynamics of expelled gas in front of the PIG, dynamics of bypass flow, and dynamics of the PIG. The bypass flow across the PIG is treated as incompressible flow with the assumption of its Mach number smaller than 0.45. The governing nonlinear hyperbolic partial differential equations for unsteady gas flows are solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used for solving the steady flow equations to get initial flow values and the dynamic equation of the PIG. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. Simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of the PIG with bypass flow under given operational conditions of pipeline.

  • PDF

A Study on the Model Updating Procedures Using Modal Frequencies (모드 주파수를 이용한 모델 개선 과정에 대한 연구)

  • Jang, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 2010
  • It is important to make a mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structure dynamics. In finite element analysis model updating is appropriate as the design parameter is used to analyze the dynamic system. The errors can be contained from the physical parameters and the element modeling. From the dynamic test, more precise dynamic characteristics can be obtained. In this paper, model updating algorithm is developed using frequency difference between experiment and calculation. Modal frequencies are obtained by experiment and finite element analysis for beams with various cross section and shapes which have added masses and holes in the middle. For plates with and without groove, experiment and analyses are carried out by applying free boundary conditions as well. Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies in case that both matrices are updated. An improved analytical model is obtained by changing model parameters such that the discrepancy between test and finite element frequencies is minimized. For beam and plate models updating of mass and stiffness matrices can improve the dynamical behavior of the model by acting on the physical parameters such as masses and stiffness.

Landslide characteristics for Hoengseong area in 2006 (2006년 횡성지역 산사태 발생특성)

  • Yoo, Nam-Jae;Choi, Joon-Sik
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.157-162
    • /
    • 2011
  • This paper presents the landslide characteristics occurred in Hoengseong, Gangwondo and around July 16 in 2006, caused by heavy rainfall and antecedent precipitation by two typhoons of Ewiniar and Bilis. The main causes of landslides were antecedent precipitation between July 12 to 13, resulting in weakening grounds by increasing the degree of saturation previously, and the additional heavy rainfall between July 15 to 16. Most of landslides at natural slopes were transitional failures occurred along the boundary between residual weathered soil in shallow depth and hard mother rock. From the results of conclusive analyses for 100 sites in Hoengseong region where landslides occurred, the slope length of landslide and slope width were less than 100m with 87% of frequency and 30m with 74% of frequency, respectively. The average value of slope angles was $24^{\circ}$.

A Study on Crushing Characteristic of Hatted Section Tube (모자형 단면부재의 압괴특성 연구)

  • 김천욱;한병기;김병삼
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.212-219
    • /
    • 2002
  • In the frontal collision of cars, front parts of cars such as engine rail and side members that are composed of hatted section tubes should absorb most of the collision energy far the passenger compartment not to be deformed. For these reasons the study on the collapse characteristics, maximum crushing load and energy absorption capacity of hatted section tubes are needed. In this study, top hatted section tubes and double hatted section tubes are investigated. The maximum crushing load of hatted section tubes is induced from plastic buckling stress of plates by considering that the hatted section tubes are composed of plates with each different boundary conditions and that its material has a strain hardening effect. On this concept maximum crushing load equations of hatted section tubes are derived and verified by experiments. from the results of experiment, the differences of collapse characteristics between top hatted section tube and double hatted section tube are analysed. And mean crushing loads of hatted section tubes from experiments are compared with other theory.