• Title/Summary/Keyword: bottom gate

Search Result 237, Processing Time 0.03 seconds

Two-Dimensional Numerical Simulation of GaAs MESFET Using Control Volume Formulation Method (Control Volume Formulation Method를 사용한 GaAs MESFET의 2차원 수치해석)

  • Son, Sang-Hee;Park, Kwang-Mean;Park, Hyung-Moo;Kim, Han-Gu;Kim, Hyeong-Rae;Park, Jang-Woo;Kwack, Kae-Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.48-61
    • /
    • 1989
  • In this paper, two-dimensional numerical simulation of GaAs MESFFT with 0.7${\mu}m$ gate length is perfomed. Drift-diffusion model which consider that mobility is a function of local electric field, is used. As a discretization method, instead of FDM (finite difference method) and FEM (finite element method), the Control-Volume Formulation (CVF) is used and as a numerical scheme current hybrid scheme or upwind scheme is replaced by power-law scheme which is very approximate to exponential scheme. In the process of numerical analysis, Peclet number which represents the velocity ratio of drift and diffusion, is introduced. And using this concept a current equation which consider numerical scheme at the interface of control volume, is proposed. The I-V characteristics using the model and numerical method has a good agreement with that of previous paper by others. Therefore, it is confined that it may be useful as a simulator for GaAs MESFET. Besides I-V characteristics, the mechanism of both velocity saturation in drift-diffusion model is described from the view of velocity and electric field distribution at the bottom of the channel. In addition, the relationship between the mechanism and position of dipole and drain current, are described.

  • PDF

High-performance WSe2 field-effect transistors fabricated by hot pick-up transfer technique (핫픽업 전사기술을 이용한 고성능 WSe2 기반 전계효과 트랜지스터의 제작)

  • Kim, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.107-112
    • /
    • 2020
  • Recently, the atomically thin transition-metal dichalcogenide (TMD) semiconductors have attracted much attention owing to their remarkable properties such as tunable bandgap with high carrier mobility, flexibility, transparency, etc. However, because these TMD materials have a significant drawback that they are easily degraded in an ambient environment, various attempts have been made to improve chemical stability. In this research article, I report a method to improve the air stability of WSe2 one of the TMD materials via surface passivation with an h-BN insulator, and its application to field-effect transistors (FETs). With a modified hot pick-up transfer technique, a vertical heterostructure of h-BN/WSe2 was successfully made, and then the structure was used to fabricate the top-gate bottom-contact FETs. The fabricated WSe2-based FET exhibited not only excellent air stability, but also high hole mobility of 150 ㎠/Vs at room temperature, on/off current ratios up to 3×106, and 192 mV/decade of subthreshold swing.

The electrical characteristics of flexible organic field effect transistors with flexible multi-stacked hybrid encapsulation

  • Seol, Yeong-Guk;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung;Lee, Deok-Gyu;Kim, Yun-Je;An, Cheol-Hyeon;Jo, Hyeong-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.176-176
    • /
    • 2010
  • One of the critical issues for applications of flexible organic thin film transistors (OTFTs) for flexible electronic systems is the electrical stabilities of the OTFT devices, including variation of the current on/off ratio (Ion/Ioff), leakage current, threshold voltage, and hysteresis under repetitive mechanical deformation. In particular, repetitive mechanical deformation accelerates the degradation of device performance at the ambient environment. In this work, electrical stability of the pentacene organic thin film transistors (OTFTs) employing multi-stack hybrid encapsulation layers was investigated under mechanical cyclic bending. Flexible bottom-gated pentacene-based OTFTs fabricated on flexible polyimide substrate with poly-4-vinyl phenol (PVP) dielectric as a gate dielectric were encapsulated by the plasma-deposited organic layer and atomic-layer-deposited inorganic layer. For cyclic bending experiment of flexible OTFTs, the devices were cyclically bent up to 105 times with 5mm bending radius. In the most of the devices after 105 times of bending cycles, the off-current of the OTFT with no encapsulation layers was quickly increased due to increases in the conductivity of the pentacene caused by doping effects from $O_2$ and $H_2O$ in the atmosphere, which leads to decrease in the Ion/Ioff and increase in the hysteresis. With encapsulation layers, however, the electrical stabilities of the OTFTs were improved significantly. In particular, the OTFTs with multi-stack hybrid encapsulation layer showed the best electrical stabilities up to the bending cycles of $10^5$ times compared to the devices with single organic encapsulation layer. Changes in electrical properties of cyclically bent OTFTs with encapsulation layers will be discussed in detail.

  • PDF

상온에서 제작된 다결정 인듐갈륨 산화물(IGO) 투명 박막트랜지스터 제조 및 특성 연구

  • Jo, Gwang-Min;Jeong, Yeon-Hu;Lee, Jun-Hyeong;Kim, Jeong-Ju;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.345-345
    • /
    • 2014
  • 최근 디스플레이 기술은 급속도로 발전해 가고 있다. 정보화 기술의 발전으로 언제 어디서나 쉽게 정보를 얻을 수 있는 유비쿼터스 시대로 접근하고 있으며, 휴대가 간편하고 이동성을 가진 휴대용 기기가 인기를 끌고 있다. 이에 따라 더 얇고 더 가벼우며 휴대하기 쉬운 디스플레이가 요구 되고 있고, 더 나아가 떨어뜨려도 깨지지 않고 유연하며, 디자인 변형이 자유로우며, 때론 종이처럼 접거나 휘어지거나 두루마리처럼 말을 수 있는 이른바 "플렉서블 디스플레이"에 대한 필요성이 점점 대두되고 있다. 이러한 첨단 디스플레이의 핵심 소자 중 하나는 산화물 박막 트랜지스터 이다. 산화물 반도체는 넓은 밴드갭을 가지고 가시광선 영역에서 투명하며, 높은 이동도를 가지고 있어 차세대 평판디스플레이, 투명디스플레이 및 플렉서블 디스플레이용 박막트랜지스터(TFT)를 위한 채널층으로써 광범위하게 연구되고 있다. 하지만 현재 대부분의 산화물 박막 트랜지스터 제조 공정은 고온에서의 열처리를 필요로 한다. 고온에서의 열처리 공정은 산화물 박막의 제조 공정 단가를 증가시키는 문제점이 있으며, 산화물 박막이 형성되는 기판의 녹는점이 낮은 경우에는 상기 기판의 변형을 가져오므로(예를 들면, 플라스틱 기판, 섬유 기재 등), 상기 산화물 박막이 적용되는 기판의 종류에 제한이 생기는 문제점이 있었다. 이에 플렉시블 디스플레이 등을 위해서는 저온공정이 필수로 선행 되어야 한다. 산화물 TFT는 당초, ZnO계의 재료가 연구되었지만 2004년 말에 Hosono 그룹이 Nature지에 "IGZO (In, Ga, Zn, O)"을 사용한 TFT를 보고한 이후 IGZO, IZO, ISZO, IYZO, HIZO와 같은 투명 산화물반도체가 TFT의 채널물질로써 많이 거론되고 있다. 그 중에서 인듐갈륨 산화물(IGO)는 삼성분계 n-형 산화물 반도체이고, 채널 이동성이 좋고 광투과도가 우수해 투명 TFT에 매우 유용하게 사용할 수 있다. 이 실험에서 우리는 인듐갈륨 산화물 박막 및 트랜지스터 특성 연구를 진행하였다. 인듐갈륨 산화물 박막은 상온에서 rf-magnetron sputtering법을 사용하여 산소분압 1~10%에서 증착 되었다. 증착된 인듐갈륨 산화물 박막은 cubic $In_2O_3$ 다결정으로 나타났으며, 2차상은 관찰 되지 않았다. 산소분압이 10%에서 1%로 변함에 따라 박막의 전도도는 $2.65{\times}10^{-6}S/cm$에서 5.38S/cm 범위에서 조절되었으며, 이를 바탕으로 인듐갈륨 박막을 active층으로 사용하는 bottom gate 구조의 박막트랜지스터를 제작 하였다. 인듐갈륨산화물 박막트랜지스터는 산소분압 10%에서 on/off 비 ${\sim}10^8$, field-effect mobility $24cm^2/V{\cdot}S$를 나타내며 상온에서 플렉서블용 고 이동도 소자 제작의 가능성을 보여준다.

  • PDF

How are the Spatio-Temporal Distribution Patterns of Benthic Macrofaunal Communities Affected by the Construction of Shihwa Dike in the West Coast of Korea? (시화방조제의 건설은 저서동물군집의 시${\cdot}$공간 분포에 어떠한 영향을 미쳤는가?)

  • HONG Jae-Sang;JUNG Rae-Hong;SEO In-Soo;YOON Kon-Tak;CHOI Byong-Mee;YOO Jae-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.882-895
    • /
    • 1997
  • Changes in the benthic communities have been studied to investigate the environmental effects before and after the construction of Shihwa Dike in the West coast of Korea. It is suggested that sequential changes in macrofaunal assemblages progressed in two sucressional directions. In the Shihwa lake under the influence of organic enrichment. First, the appearance of 'azoic tone' or 'grossly polluted zone' developed in the area of less than 6 m in depth resulted from the severe dissolved oxygen depletion due to the eutrophication from the increased organic loading. Second, the 'polluted zone' characterized by the proliferation of the opportunistic species in organically enriched area, was found in the vicinity of the industrial discharges and nearby fluvial inputs. This benthic community succession in the Shihwa lake seemed to be caused by the various ecological events such as an eutrophication in this organically enriched environment after construction of the dike and other physico-chemical parameters like salinity and dissolved oxygen in the bottom water, which may be influenced by the irregular surface water discharge and dilution by outer seawater inflow through the water gate of the dike. On the other hand, the benthic communities in the outside of the dike showed that the species richness was more than doubled and the abundance increased almost seven times more than that before the dike construction. This may be a typical characteristics of the initial phase in benthic eutrophication, suggesting that an increased organic input area may have been reponsible for this faunal change in the study area.

  • PDF

Conservation Status, Construction Type and Stability Considerations for Fortress Wall in Hongjuupseong (Town Wall) of Hongseong, Korea (홍성 홍주읍성 성벽의 보존상태 및 축성유형과 안정성 고찰)

  • Park, Junhyoung;Lee, Chanhee
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.3
    • /
    • pp.4-31
    • /
    • 2018
  • It is difficult to ascertain exactly when the Hongjuupseong (Town Wall) was first constructed, due to it had undergone several times of repair and maintenance works since it was piled up newly in 1415, when the first year of the reign of King Munjong (the 5th King of the Joseon Dynasty). Parts of its walls were demolished during the Japanese occupation, leaving the wall as it is today. Hongseong region is also susceptible to historical earthquakes for geological reasons. There have been records of earthquakes, such as the ones in 1978 and 1979 having magnitudes of 5.0 and 4.0, respectively, which left part of the walls collapsed. Again, in 2010, heavy rainfall destroyed another part of the wall. The fortress walls of the Hongjuupseong comprise various rocks, types of facing, building methods, and filling materials, according to sections. Moreover, the remaining wall parts were reused in repair works, and characteristics of each period are reflected vertically in the wall. Therefore, based on the vertical distribution of the walls, the Hongjuupseong was divided into type I, type II, and type III, according to building types. The walls consist mainly of coarse-grained granites, but, clearly different types of rocks were used for varying types of walls. The bottom of the wall shows a mixed variety of rocks and natural and split stones, whereas the center is made up mostly of coarse-grained granites. For repairs, pink feldspar granites was used, but it was different from the rock variety utilized for Suguji and Joyangmun Gate. Deterioration types to the wall can be categorized into bulging, protrusion of stones, missing stones at the basement, separation of framework, fissure and fragmentation, basement instability, and structural deformation. Manually and light-wave measurements were used to check the amount and direction of behavior of the fortress walls. A manual measurement revealed the sections that were undergoing structural deformation. Compared with the result of the light-wave measurement, the two monitoring methods proved correlational. As a result, the two measuring methods can be used complementarily for the long-term conservation and management of the wall. Additionally, the measurement system must be maintained, managed, and improved for the stability of the Hongjuupseong. The measurement of Nammunji indicated continuing changes in behavior due to collapse and rainfall. It can be greatly presumed that accumulated changes over the long period reached the threshold due to concentrated rainfall and subsequent behavioral irregularities, leading to the walls' collapse. Based on the findings, suggestions of the six grades of management from 0 to 5 have been made, to manage the Hongjuupseong more effectively. The applied suggested grade system of 501.9 m (61.10%) was assessed to grade 1, 29.5 m (3.77%) to grade 2, 10.4 m (1.33%) to grade 3, 241.2 m (30.80%) and grade 4. The sections with grade 4 concentrated around the west of Honghwamun Gate and the east of the battlement, which must be monitored regularly in preparation for a potential emergency. The six-staged management grade system is cyclical, where after performing repair and maintenance works through a comprehensive stability review, the section returned to grade 0. It is necessary to monitor thoroughly and evaluate grades on a regular basis.

The Neoproterozoic and Cretaceous Tectonic Evolution and Important Geoheritages in the Gogunsan Archipelago (고군산군도 지역의 신원생대 및 백악기 지구조 진화과정과 중요 지질유산)

  • Oh, Chang Whan;Kim, Won Jeong;Lee, Seung Hwan;Lee, Bo Young;Kim, Jin Seok;Choi, Seung Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.251-277
    • /
    • 2019
  • The Gogunsan Archipelago is composed of two island groups; the first group includes Mal-do, Myeong-do, Gwangdae-do, and Bangchuk-do islands consisting of Neoproterozoic rocks, and the second group includes Yami-do, Sinsi-do, Muneo-do, Jangja-do, and Seonyu-do islands consisting of Cretaceous rocks. The first group mainly consists of the Bangchuk formation which can be divided into two layers; the lower layer was more deformed than the upper layer. The former was intruded by mafic and felsic volcanic rocks formed in the volcanic arc tectonic setting 930-890 Ma and the latter was deposited ca. 825-800 Ma. In these islands, large scale folds with east-west fold axes were beautifully formed; the Maldo island fold was designated as natural monument and large scale beautiful chevron fold was developed on the Gwangdae-do island. In addition, there are unique zebra-shaped outcrop formed by a mixing of basic and acidic magma and Independent Gate shaped outcrop formed by coastal erosion. On the other hand, the Yami-do, Sinsi-do, Muneo-do, Jangja-do and Seonyu-do islands consist of 92-91Ma Cretaceous volcanic rocks and, in Sinsi-do island, the Nanshan formation deposited ca. 92 Ma. These Cretaceous volcanic rocks formed by melting of the continental crust by the heat supplied from the uplifting mantle due to the extension caused by a retreat of subducting ocean slab. Yami-do and Sinsi-do islands are composed of rhyolite. In Yami-do island, bands with vertical joint formed by cooling of the bottom part of the lava, are shown. In Sinsi-do island, large-scale vertical joints formed by cooling of lava flow, were developed. The Jangja-bong of Jangja-do island and Mangju-bong of Seonyu-do island are composed of brecciated rhyolite and formed a ring shaped archipelago contributing to the development of marine culture by providing natural harbor condition. They also provide beautiful views including 'Seonyu 8 views' along with other islands. As mentioned above, the Gogunsan archipelago is rich in geoheritages and associated cultural and historical resources, making it worth as a National Geopark.