• 제목/요약/키워드: borohydride

검색결과 194건 처리시간 0.026초

Enhanced Electrocatalytic Activity of Low Ni Content Nano Structured NiPd Electrocatalysts Prepared by Electrodeposition Method for Borohydride Oxidation

  • Zolfaghari, Mahdieh;Arab, Ali;Asghari, Alireza
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권3호
    • /
    • pp.238-247
    • /
    • 2020
  • Some nano structured bimetallic NiPd electrocatalysts were electrodeposited on glassy carbon electrodes using a double potential step chronoamperometry. The morphology of the electrodeposited samples was investigated by field emission-scanning electron microscopy, while their compositions were evaluated using energy dispersive X-ray spectroscopy. It was observed that the electrodeposited samples contained a low Ni content, in the range of 0.80 - 7.10%. The electrodeposited samples were employed as the anode electro-catalysts for the oxidation of sodium borohydride in NaOH solution (1.0 M) using cyclic voltammetry, chronoamperometry, rotating disk electrode, and impedance spectroscopy. The number of exchanged electrons, charge transfer resistances, apparent rate constants, and double layer capacitances were calculated for the oxidation of borohydride on the prepared catalysts. According to the results obtained, the NiPd-2 sample with the lowest Ni content (0.80%), presented the highest catalytic activity for borohydride oxidation compared with the other NiPd samples as well as the pure Pd sample. The anodic peak current density was obtained to be about 1.3 times higher on the NiPd-2 sample compared with that for the Pd sample.

The Characterization of Borohydride-Stabilized Nanosilvers in Laponite Sol Using 1H NMR: Its Ligand Exchange Reactions with MUA and TOP

  • Seo, Jae-Seok;Son, Dong-Min;Lee, Han-Na;Kim, Jee-Kwang;Kim, You-Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2651-2654
    • /
    • 2009
  • In borohydride-protected nanosilvers in laponite sol, the silver particles aggregate to form short chains and a dumbbell shape. The $^{1}H$ NMR measurements in this study represent, to our knowledge, the first observation of proton resonances of borohydride-protected nanosilvers in aqueous solution. Borohydride on nanosilver can be exchanged with 11-mercaptoundecanoic acid (MUA) or trioctylphosphine (TOP). Transmission electron microscopy and UV-Vis spectroscopy data show that the number of aggregated silver nanoparticles decreases upon addition of aforementioned ligands due to the formation of silver MPCs (monolayer-protected clusters). Adsorption of MUA or TOP on nanosilver is confirmed through the observation of broad proton resonances of MPCs in $^{1}H$ NMR spectra.

이동전원용 직접 붕소 연료전지 개발 (Development of the Direct Borohydride Fuel Cell for Portable Power Source)

  • 양태현;이정우;박진수;이원용;김창수
    • 신재생에너지
    • /
    • 제3권1호
    • /
    • pp.68-74
    • /
    • 2007
  • The fuel cells for portable application are attracted using a liquid fuel such as methanol and chemical hydride solutions. Recently, DBFC [Direct Borohydride Fuel Cell] is a candidate for power of portable electronic devices. In this work, the anion exchange membrane and non-precious catalyst for the DBFC were concerned. Anion-exchange membrane was fabricated by amination of polysulfone followed chloromethylation. Non-precious catalysts such as raney-Ni and Ag were used as an anode and cathode catalyst. The optimum conditions of catalyst slurry mixing and MEA fabrication were developed. The single cell performance using anion exchange membrane and non-precious catalyst was evaluated and the results were compared with cation exchange membrane [Nafion membrane] and precious catalysts.

  • PDF

Nanoconfinement effects of MCM-41 on the thermal decomposition of metal borohydrides

  • Kim, Sanghoon;Song, Hyejin;Kim, Chul
    • 분석과학
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2018
  • We used differential scanning calorimetry and a thermogravimetric analysis to investigate the effect of being confined in mesoporous MCM-41 on the decomposition of lithium borohydride and magnesium borohydride when heated. The confinement did not cause a phase transition of the metal borohydrides inside MCM-41, but did lower their decomposition temperature. With the exception of a lowering of the temperature, the decomposition reaction mechanism of the metal borohydrides was nearly the same for both the bulk and confined samples.

직접 수소화붕소나트륨/과산화수소 연료전지를 위한 니켈 기반 촉매 (Nickel-Based Catalysts for Direct Borohydride/Hydrogen Peroxide Fuel Cell)

  • 오택현
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.587-595
    • /
    • 2020
  • Nickel-based bimetallic catalysts were investigated for use in direct borohydride/hydrogen peroxide fuel cells. For anode and cathode, PdNi and AuNi catalysts were used, respectively. Nickel-based bimetallic catalysts have been investigated through various methods, such as inductively coupled plasma optical emission spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy dispersive spectroscopy. The performance of the catalysts was evaluated through fuel cell tests. The maximum power density of the fuel cell with nickel-based bimetallic catalysts was found to be higher than that of the fuel cell with the monometallic catalysts. The nickel-based bimetallic catalysts also exhibited a stable performance up to 60 minutes.

Selective Reduction of $\alpha,\beta$-Unsaturated Ketones with Borohydride Exchange Resin-$CuSO_4$ in Methanol

  • Yoon, Nung-Min;Sim, Tae-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권6호
    • /
    • pp.749-752
    • /
    • 1993
  • Borohydride exchange resin $(BER)-CuSO_4$ system readily reduces {\alpha},{\beta}$-unsaturated ketones to the corresponding saturated alcohols quantitatively. This reduction tolerates many functional groups such as carbon-carbon multiple bonds, chlorides, epoxides, esters, amides and nitriles.

알칼리 붕소 수소화물 직접이용 연료전지에서의 전극촉매 연구 (Study of the Electrode Catalyst for Direct Borohydride Fuel Cel)

  • 전창성;송광호;김성현;이관영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.299-302
    • /
    • 2005
  • Direct Borohydride Fuel Cell은 알칼리 붕소 수소화물의 수용액을 이용하는 연료전지로 연료의 직접 산화반응을 통해 기존의 DMFC(직접 메탄을 연료전지)보다 높은 전류밀도와 OUV(Open Circuit Voltage)를 나타낸다. 또한 액체 연료를 사용하므로 장치 구성이 간단하며, 사용하는 연료가 반응성이 높은 알칼리 붕소 수소화물로 이루어져 있기 때문에 탄화수소 계열의 액체 연료와 달리 전기화학 반응이 비귀금속 전극에서도 쉽게 이루어질 수 있다는 장점을 가지고 있다 하지만 강알칼리 조건에서 전기화학 반응이 진행되므로 이에 적합한 재료로 장치를 구성해야 하며, 액체 상태의 연료가 전해질을 투과하는 현상인 크로스오버 문제를 해결해야 하고, 생성물인 $BO_2$-가 침적되어 전지효율을 떨어뜨리는 것을 방지해야 하는 문제점이 있다. 또한 알칼리 붕소 수소화물이 물과 반응하여 수소를 발생시키는 hydrolysis 반응을 억제하여야 하고 직접 산화반응만이 진행될 수 있도록 전지를 구성해야 연료효율을 높일 수 있다. 따라서 본 연구에서는 수소 생성반응일 hydrolysis 반응은 억제하고 연료의 직접 산화반응만을 진행시키기 위한 전극촉매에 대하여 연구하였다. 일반적인 저온형 연료전지의 전극촉매로 사용하는 Pt등의 귀금속 촉매와, 귀금속 촉매를 대체할 수 있는 Ni등의 비귀금속 촉매를 그 연구 대상으로 하였으며, 평가 방법으로는 unit cell station을 이용한 단위전지 성능측정 실험과 Potentiostat/Galvanostat을 이용한 half cell 실험을 병행하여 수행하였다.

  • PDF

수소화붕소리튬, 보란 및 보란-염화리튬 (1 : 0.1)에 의한 카르보닐화합물의 선택환원 (Selective Reduction of Carbonyl Compounds with Lithium Borohydride, Borane, and Borane-Lithium Chloride (1 : 0.1) in Tetrahydrofuran)

  • 윤능민;차진순
    • 대한화학회지
    • /
    • 제22권4호
    • /
    • pp.259-267
    • /
    • 1978
  • 수소화붕소리튬, 보란 그리고 보란-염화리튬(1:0.1)의 카르보닐화합물 환원에 있어서의 선택성을 5쌍의 대표적인 카르보닐화합물 쌍(벤즈알데히드-아세토페논, 벤즈알데히드-2-헵탄온, 2-헵탄온-벤조페논, 아세토페논-벤조페논, 2-헵탄온-아세토페논)에 대해서 이들 수소화물의 제한된 양을 반응시켜 알아보았다. 이들 수소화물중 보란-염화리튬(1:0.1)이 제일 선택성이 좋았고, 수소화붕소 리튬과 보란도 2-헵탄온-아세토페논 쌍을 제외하고는 좋은 선택성을 보였다.

  • PDF

직접 수소화붕소나트륨/과산화수소 연료전지의 산화극 연료 조성에 관한 연구 (A Study on Anode Fuel Composition of Direct Borohydride/Hydrogen Peroxide Fuel Cell)

  • 이태훈;유수상;오택현
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.514-523
    • /
    • 2021
  • This study investigated the effect of anode fuel composition on the performance of direct borohydride/hydrogen peroxide fuel cells (DBHPFCs). The effect of sodium borohydride (NaBH4) and sodium hydroxide (NaOH) concentrations on fuel cell performance was determined through fuel cell tests. Fuel cell performance increased with an increase in the NaBH4 concentration, whereas it decreased with an increase in the NaOH concentration. The anode fuel composition was selected as 10 wt% NaBH4+10 wt% NaOH+80 wt% H2O based on the fuel viscosity, electrochemical reaction rate, and decomposition reaction rate. DBHPFCs were also tested to analyze the effect of operating temperature and operation time on fuel cell performance. The present results can be used as a reference basis to determine operating conditions of DBHPFCs.