• Title/Summary/Keyword: bootstrap test

Search Result 145, Processing Time 0.024 seconds

Bootstrap tack of Fit Test based on the Linear Smoothers

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.357-363
    • /
    • 1998
  • In this paper we propose a nonparametric lack of fit test based on the bootstrap method for testing the null parametric linear model by using linear smoothers. Most of existing nonparametric test statistics are based on the residuals. Our test is based on the centered bootstrap residuals. Power performance of proposed bootstrap lack of fit test is investigated via Monte carlo simulation.

  • PDF

Bootstrap Median Tests for Right Censored Data

  • Park, Hyo-Il;Na, Jong-Hwa
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.423-433
    • /
    • 2000
  • In this paper, we consider applying the bootstrap method to the median test procedures for right censored data. For doing this, we show that the median test statistics can be represented by the differences of two sampler medians. Then we review to the re-sampling methods for censored dta and propose the test procedures under the location translation assumption and Behrens-Fisher problem. Also we compare our procedures with other re-sampling method, which is so-called permutation test through an example. Finally we show the validity of bootstrap median test procedure in the appendix.

  • PDF

A Nonparametric Bootstrap Test and Estimation for Change

  • Kim, Jae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.443-457
    • /
    • 2007
  • This paper deals with the problem of testing the existence of change in mean and estimating the change-point using nonparametric bootstrap technique. A test statistic using Gombay and Horvath (1990)'s functional form is applied to derive a test statistic and nonparametric change-point estimator with bootstrapping idea. Achieved significance level of the test is calculated for the proposed test to show the evidence against the null hypothesis. MSE and percentiles of the bootstrap change-point estimators are given to show the distribution of the proposed estimator in simulation.

Stationary bootstrapping for structural break tests for a heterogeneous autoregressive model

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.4
    • /
    • pp.367-382
    • /
    • 2017
  • We consider an infinite-order long-memory heterogeneous autoregressive (HAR) model, which is motivated by a long-memory property of realized volatilities (RVs), as an extension of the finite order HAR-RV model. We develop bootstrap tests for structural mean or variance changes in the infinite-order HAR model via stationary bootstrapping. A functional central limit theorem is proved for stationary bootstrap sample, which enables us to develop stationary bootstrap cumulative sum (CUSUM) tests: a bootstrap test for mean break and a bootstrap test for variance break. Consistencies of the bootstrap null distributions of the CUSUM tests are proved. Consistencies of the bootstrap CUSUM tests are also proved under alternative hypotheses of mean or variance changes. A Monte-Carlo simulation shows that stationary bootstrapping improves the sizes of existing tests.

Nonparametric test for cointegration rank using Cholesky factor bootstrap

  • Lee, Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.587-592
    • /
    • 2016
  • It is a long-standing issue to correctly determine the number of long-run relationships among time series processes. We revisit nonparametric test for cointegration rank and propose bootstrap refinements. Consistent with model-free nature of the tests, we make use of Cholesky factor bootstrap methods, which require weak conditions for data generating processes. Simulation studies show that the original Breitung's test have difficulty in obtaining the correct size due to dependence in cointegrated errors. Our proposed bootstrapped tests considerably mitigate size distortions and represent a complementary approach to other bootstrap refinements, including sieve methods.

Stationary bootstrap test for jumps in high-frequency financial asset data

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.163-177
    • /
    • 2016
  • We consider a jump diffusion process for high-frequency financial asset data. We apply the stationary bootstrapping to construct a bootstrap test for jumps. First-order asymptotic validity is established for the stationary bootstrapping of the jump ratio test under the null hypothesis of no jump. Consistency of the stationary bootstrap test is proved under the alternative of jumps. A Monte-Carlo experiment shows the advantage of a stationary bootstrapping test over the test based on the normal asymptotic theory. The proposed bootstrap test is applied to construct continuous-jump decomposition of the daily realized variance of the KOSPI for the year 2008 of the world-wide financial crisis.

Bootstrap Testing for Reliability of Stess-Strength Model with Explanatory Variables

  • Park, Jin-Pyo;Kang, Sang-Gil;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.263-273
    • /
    • 1998
  • In this paper, we consider some approximate testings for the reliability of the stress-strength model when the stress X and strength Y each depends linearly on some explanatory variables z and w, respectively. We construct a bootstrap procedure for testing for various values of the reliability and compare the power of the bootstrap test with the test based on Mann-Whitney type estimator by Park et.al.(1996) for small and moderate sample size.

  • PDF

Bootstrap Method for Row and Column Effects Model

  • Jeong, Hyeong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.521-529
    • /
    • 2005
  • In this paper, we consider a bootstrap method to the 'row and column effects model' (RC model) to analyze a contingency table with ordered variables. We propose a bootstrap procedure for testing of independence, equality of intervals, and goodness of fit in the RC model. A real data example is included.

Comparison of the Power of Bootstrap Two-Sample Test and Wilcoxon Rank Sum Test for Positively Skewed Population

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2022
  • This research examines the power of bootstrap two-sample test, and compares it with the powers of two-sample t-test and Wilcoxon rank sum test, through simulation. For simulation work, a positively skewed and heavy tailed distribution was selected as a population distribution, the chi-square distributions with three degrees of freedom, χ23. For two independent samples, the fist sample was selected from χ23. The second sample was selected independently from the same χ23 as the first sample, and calculated d+ax for each sampled value x, a randomly selected value from χ23. The d in d+ax has from 0 to 5 by 0.5 interval, and the a has from 1.0 to 1.5 by 0.1 interval. The powers of three methods were evaluated for the sample sizes 10,20,30,40,50. The null hypothesis was the two population medians being equal for Bootstrap two-sample test and Wilcoxon rank sum test, and the two population means being equal for the two-sample t-test. The powers were obtained using r program language; wilcox.test() in r base package for Wilcoxon rank sum test, t.test() in r base package for the two-sample t-test, boot.two.bca() in r wBoot pacakge for the bootstrap two-sample test. Simulation results show that the power of Wilcoxon rank sum test is the best for all 330 (n,a,d) combinations and the power of two-sample t-test comes next, and the power of bootstrap two-sample comes last. As the results, it can be recommended to use the classic inference methods if there are widely accepted and used methods, in terms of time, costs, sometimes power.

Is the t-test insensitive than the bootstrap method in the P300-based concealed information test? (P300 숨긴정보검사에서 t 검증이 부트스트랩 방법보다 덜 민감한가?)

  • Eom, Jin-sup;Sohn, Jin-Hun;Park, Mi-Sook
    • Korean Journal of Forensic Psychology
    • /
    • v.11 no.1
    • /
    • pp.21-36
    • /
    • 2020
  • In P300-based concealed information test (P300 CIT), it evaluates whether the P300 amplitude for the probe is significantly greater than that of the irrelevant to determine if the suspect is telling a lie. An independent sample t-test or a bootstrap method can be used as a statistical test to make that decision. Rosenfeld et al. (2004) used the bootstrap method, claiming that "t tests on single sweeps are too insensitive to use to compare mean probe and irrelevant P300s within individuals" and their method has been accepted to date. The purpose of the study is to evaluate whether the power of t-test is lower than that of the bootstrap method in the P300 CIT. The Monte Carlo study was conducted by using EEG collected from 39 participants. The results showed that the type I error rates of the t-test and the percentile bootstrap method were similar and the power of the percentile bootstrap method was slightly higher than that of the t-test. The type I error rates of the t-test and the percentile bootstrap method were slightly lower than the significance level and the powers of the two tests were also slightly lower than that of the theoretical t-test. On the other hand, the type I error rate and power of the standard error Bootstrap method were the same as those of the theoretical t-test and its power was .012 ~ .081 higher than that of t-test depending on experimental conditions.

  • PDF