본 연구에서는 기상청 산한 56개 기상관측소의 연최대치계열 일 강우자료를 대상으로 Bootstrap기법과 SIR알고리즘을 이용하여 표본을 재추출한 후, 빈도해석을 적용하여 결과를 비교검토 하였다. SIR알고리즘은 기존에 발생되었던 극한 사상에 가중치를 두어 표본을 재추출하는 방법으로 과거에 발생한 극한사상이 기후변화에 의해서 더욱 빈발하게될 것 이라는 가정에 기초한다고 할 수 있다. 반면에 Bootstrap기법은 현재 발생한 사상에 동일한 가중치를 두어 표본을 재추출하는 방법이다. 따라서 두 방법의 차이를 계산하여 기후변화로 인한 극한강우의 빈도별 확률강우량의 변화를 산정할 수 있다. 비교결과 SIR알고리즘에 의하여 재추출된 강우를 이용하여 산정된 확률강우량의 경우, Bootstrap기법에 의해서 재추출된 강우를 이용하여 산정한 확률강우량에 비해 지점에 따라 작게는 -10%정도의 감소와 크게는 60%정도의 차이를 보임을 확인하였다.
본 연구에서는 수문자료와 수문해석과정에 포함되어 있는 불확실성을 고려함으로써 현재 하천 시설물에 적용되고 있는 안전율 혹은 여유고에서 고려하고 있는 불확실성과 비교 검토하였다. 불확실성을 고려하기 위하여 연 최대 강우량자료를 Bootstrap 방법, SIR 알고리즘을 통해 재추출함으로써 불확실성을 고려한 확률강우량을 산정 하였다. 산정된 현재의 확률강우량과 불확실성을 고려한 경우의 확률강우량을 이용하여 HEC-HMS를 통해 홍수량을 산정, HEC-RAS를 통해 지점별 홍수위를 산정 하였다. 예상홍수피해액의 산정은 다차원홍수피해산정방법(MD-FDA)을 이용하였다. 그 결과 SIR 알고리즘을 이용한 경우 예상홍수피해액의 최대값은 현재의 확률강우량을 이용한 경우의 1.22배, Bootstrap 방법에 의한 최대값은 0.92배의 값을 보였다. SIR 알고리즘은 자료의 재추출시 가중치 부여를 위한 우도함수의 영향을 크게 받으며, 이로 인한 불확실성의 구간이 커져 가장 큰 예상홍수 피해액이 도출되었다. 따라서 자료의 적정 위치에 우도를 결정하는 것이 매우 중요하게 작용하는 것을 알 수 있었다.
Communications for Statistical Applications and Methods
/
제27권1호
/
pp.65-77
/
2020
Geometric charts are effective in monitoring the fraction nonconforming in high-quality processes. The in-control fraction nonconforming is unknown in most actual processes; therefore, it should be estimated using the Phase I sample. However, if the Phase I sample size is small the practitioner may not achieve the desired in-control performance because estimation errors can occur when the parameters are estimated. Therefore, in this paper, we adjust the control limits of geometric charts with the bootstrap algorithm to improve the in-control performance of charts with smaller sample sizes. The simulation results show that the adjustment with the bootstrap algorithm improves the in-control performance of geometric charts by controlling the probability that the in-control average run length has a value greater than the desired one. The out-of-control performance of geometric charts with adjusted limits is also discussed.
Journal of the Korean Data and Information Science Society
/
제14권2호
/
pp.337-343
/
2003
In this paper we present the prediction interval estimation method using bootstrap method for least squares support vector machine(LS-SVM) regression, which allows us to perform even nonlinear regression by constructing a linear regression function in a high dimensional feature space. The bootstrap method is applied to generate the bootstrap sample for estimation of the covariance of the regression parameters consisting of the optimal bias and Lagrange multipliers. Experimental results are then presented which indicate the performance of this algorithm.
Analyzing autocorrelated data set is still an open problem. Developing on easy and efficient method for severe positive correlated data set, which is common in simulation output, is vital for the simulation society. Bootstrap is on easy and powerful tool for constructing non-parametric inferential procedures in modern statistical data analysis. Conventional bootstrap algorithm requires iid assumption in the original data set. Proper choice of resampling units for generating replicates has much to do with the structure of the original data set, iid data or autocorrelated. In this paper, a new bootstrap resampling scheme is proposed to analyze the autocorrelated data set : the Threshold Bootstrap. A thorough literature search of bootstrap method focusing on the case of autocorrelated data set is also provided. Theoretical foundations of Threshold Bootstrap is studied and compared with other leading bootstrap sampling techniques for autocorrelated data sets. The performance of TB is reported using M/M/1 queueing model, else the comparison of other resampling techniques of ARMA data set is also reported.
수문기상자료의 빈도해석은 풍수해에 따른 대응 및 시설물의 설계기준에 있어 중요한 요소 중 하나이다. 일반적으로 수문기상자료에 대한 빈도해석의 경우 관측자료는 통계적으로 정상성을 가진다고 가정하고, 확률분포의 매개변수를 고려하는 매개변수적 방법을 적용하고 있다. 이러한, 매개변수적 빈도해석을 위해서는 신뢰성 있는 충분한 자료의 수집이 필요하지만, 강수량과 다르게 적설량의 경우 계절적 특성과 함께 최근에는 기후변화로 인한 적설량 관측일수 및 평균 최심신적설량이 감소하기 때문에 부족한 자료에 대한 문제점을 보완할 필요가 있다. 이에 본 연구에서는 매개변수 빈도해석 방법과 부족한 자료의 문제점을 보완할 수 있는 표본 재추출 기법인 Bootstrap방법과 SIR(Sampling Importance Resampling)알고리즘을 적용하여 적설량의 빈도해석을 실시하였다. 58개 기상관측소에 대해 재추출된 일 최대 최심신적설량 자료를 이용한 비매개변수적 빈도해석을 통해 확률적설량을 산정하고 이를 비교 분석하였다. 빈도별 확률적설량의 증감률을 검토한 결과 매개변수적 빈도해석과 비매개변수적 빈도해석에서 증감률을 나타내는 지점들이 대부분 일치하는 것으로 나타났다. 확률적설량은 관측 자료와 Bootstrap방법에서 -19.2%~3.9%, Bootstrap방법과 SIR알고리즘에서 -7.7%~137.8% 정도의 차이를 보였다. 표본 재추출 기법은 관측표본이 적은 적설량의 빈도해석 및 불확실성 범위의 제시가 가능함을 확인할 수 있었고, 이는 여름철 태풍과 같이 계절적 특성을 지닌 다른 자연재난의 해석에도 적용될 수 있을 것으로 판단된다.
일반적으로 빈도해석을 진행할 경우 자료는 정상성을 가정하고 분석하게 된다. 그러나 최근 들어 기후변화 등의 원인으로 인하여 강우나 유출량이 변화하고 있어 변화하는 강우나 유출량을 고려해서 빈도해석을 해야 한다는 주장이 제기되고 있다. 이에 본 연구에서는 Bootstrap을 기반으로 개발된 SIR 알고리즘을 이용하여 홍수빈도해석을 수행하기위한 방안을 제시하였다. SIR 알고리즘은 우도함수를 고려하여 자료를 재추출하기 위해서 사용되어 왔으며, 본 연구에서도 최근에 변화하는 홍수량의 변화 양상을 고려하여 홍수량 자료를 재추출하기 위해서 적용되었다. 증가된 홍수 특성을 고려하여 재추출된 홍수량자료는 매개변수적 빈도해석을 함으로써 지속시간별 홍수량을 산정하였으며, 산정된 빈도별 홍수량들을 Bootstrap을 이용해서 재추출한 자료를 이용한 빈도해석결과와 원자료를 이용하여 분석한 빈도해석 결과를 비교하였다. 비교결과 SIR알고리즘을 이용해서 빈도해석을 진행한 경우의 빈도별 홍수량이 가장 크게 나타났다. 따라서 홍수빈도해석시 현재까지의 변화하는 홍수량 패턴을 고려할 경우, 확률홍수량이 증가하는 것을 확인하였다.
This paper proposes a new algorithm for estimating ARMA model parameters. In estimating ARMA model parameters, several methods such as generalized least square method, instrumental variable method have been developed. Among these methods, the utilization of a bootstrap type algorithm is known as one of the effective approach for the estimation, but there are cases that it does not converge. Hence, in this paper, making use of a cross correlation function and utilizing the relation of structural a priori knowledge, a new bootstrap algorithm is developed. By introducing theoretical relations, it became possible to remove terms, which is liable to include much noise. Therefore, this leads to robust parameter estimation. It is shown by numerical examples that using this algorithm, all simulation cases converge while only half cases succeeded with the previous one. As for the calculation time, judging from the fact that we got converged solutions, our proposed method is said to be superior as a whole.
Communications for Statistical Applications and Methods
/
제8권3호
/
pp.697-709
/
2001
In this paper we study two vector-valued process capability indices $C_{p}$=($C_{px}$, $C_{py}$ ) and C/aub pm/=( $C_{pmx}$, $C_{pmy}$) considering process capability indices $C_{p}$ and $C_{pm}$ . First, two asymptotic distributions of plug-in estimators $C_{p}$=($C_{px}$, $C_{py}$ ) and $C_{pm}$ =) $C_{pmx}$, $C_{pmy}$) are derived.. With the asymptotic distributions, we propose asymptotic confidence regions for our indices. Next, obtaining the asymptotic distributions of two bootstrap estimators $C_{p}$=($C_{px}$, $C_{py}$ )and $C_{pm}$ =( $C_{pmx}$, $C_{pmy}$) with our bootstrap algorithm, we will provide the consistency of our bootstrap for statistical inference. Also, with the consistency of our bootstrap, we propose bootstrap asymptotic confidence regions for our indices. (no abstract, see full-text)see full-text)e full-text)
CCC-r 관리도는 불량률이 매우 낮은 고품질 공정을 관리하는 데 효율적이라고 알려져 있다. 대부분의 공정에서 공정 모수의 값은 알려져 있지 않기 때문에 제1국면에서 이를 추정해야 하는데, 표본의 크기가 충분히 크지 않은 경우 추정 오차가 발생하여 원하는 관리상태에서의 성능을 만족하지 못하는 경우가 발생한다. 뿐만 아니라 제1국면에서 추출하는 표본에 따른 산포로 인하여 관리상태일 때의 성능의 산포 또한 커지게 된다. 이러한 문제를 해결하기 위해 이 논문에서는 관리상태일 때 신호까지의 평균관측개수가 사전에 정한 확률로 목표하는 값보다 큰 값을 갖도록, 붓스트랩 알고리즘을 사용하여 CCC-r 관리도의 관리한계를 조정하는 절차를 제안하였다. 이때 고품질 공정에 적용하기 위하여 최대우도추정량 대신 베이즈추정량을 사용하여 불량률을 추정하였다. 다양한 상황에 대해 모의실험을 수행한 결과, 제안된 절차는 CCC-r 관리도의 관리상태 성능을 크게 향상시킴을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.