• Title/Summary/Keyword: boost PFC converter

Search Result 176, Processing Time 0.026 seconds

Advanced Three-Phase PFC Power Converters with Three-Phase Diode Rectifier and Four-Switch Boost Chopper

  • Nishimura Kazunori;Hirachi Katsuya;Hiraki Eiji;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.356-365
    • /
    • 2006
  • This paper presents an improved three-phase PFC power rectifier with a three-phase diode rectifier cascaded four-switch boost converter. Its operating principle contains the operating principle of two conventional three-phase PFC power rectifiers: one switch boost converter type and a two switch boost converter type. The operating characteristics of the four switch boost converter type three-phase PFC power rectifier are evaluated from a practical point of view, being compared with one switch boost converter type and two switch boost converter topologies.

Characteristics analysis of PFC boost converter with soft switching for harmonics reduction (고조파 저감을 위한 소프트 스위칭 승압형 PFC컨버터의 특성해석)

  • 김봉규
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.150-154
    • /
    • 2000
  • This paper proposes PFC boost converter with soft switching for harmonics decrement and analyzes characteristics of PFC boost converter. In this technique power factor correction(PFC) is usually obtained by operating the PFC stage in the discontinuous current mode(DCM) Switching devices are operated for reducing current stress and electronical noise. As a result eliminate 3rd harmonic component and high power factor(PF) of the input line are verified by characteristics analysis and experimental results.

  • PDF

Conducted Noise Reduction in PFC Boost Converter for Air Conditioner (에어컨용 PFC Boost Convertor의 전도 노이즈 저감)

  • 이성희;김이훈;김영규;원충연;김태덕;김대경
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.455-462
    • /
    • 2003
  • Switching PFC converters are widely used not only to comply the power quality specification but also for maximum efficiency. However switching PFC converters generate serious electromagnetic interference(EMI). In this paper to solve this problem, we applied the APW(Anti-Phase Winding) and RPWM(Random PWM) technique to PFC boost converter and obtained good results. Simulation and experimental results show the improved harmonics and reduced EMI effect in air-conditioner system.

Improved ZVT AC/DC PFC Boost Converter (개선된 ZVT AC/DC PFC Boost 컨버터)

  • Ryu, Jong-Gyu;Kim, Yong;Bae, Jin-Yong;Gye, Sang-Bum;Kwon, Soon-Do
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.172-175
    • /
    • 2005
  • Recently international regulations governing the amount of harmonic currents(e.g IEC 61000-3-2) became mandatory and active Power factor correction (PFC) pre-regulator circuit became inevitable for the AC/DC converters. Among these topologies, the boost topology represents an optimum solution for a PFC pre-regulation in a high power application. This paper propose improved ZVT(Zero Voltage Transition) AC/DC PFC Boost using the average current control employing a soft-switching technique of the auxiliary switch with a minimum number of components. The conventional ZVT PFC Boost Converter has a disadvantage that the auxiliary switch turns off hard, which influences the overall efficiency and the EMI problem. In this paper, an improved ZVT PFC Boost converter using active snubber is proposed to minimize the switching loss of the auxiliary. The prototype of 100kHz, 640W system was implemented to show the improved performance.

  • PDF

Improved AC/DC PFC ZVT Boost Converter (개선된 AC/DC PFC ZVT Boost 컨버터)

  • Ryu, Jong-Gyu;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Cho, Kyu-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.62-69
    • /
    • 2005
  • This paper presents the improved AC/DC PFC(Power-Factor-Correction) ZVT(Zero-Voltage-Transition) Boost Converter. The conventional AC/DC PFC ZVT Boost Converter minimizes the switching loss of the main switch within all of the load range. That is because AC/DC PFC ZVT Boost converter makes the main switch and the auxiliary switch turn on simultaneously so that it makes ZVS (Zero-Voltage-Switching) possible at the light load. However, it has two problems that ale large loss of the auxiliary switch and the increasing of the reverse current of the main switch. Therefore this research presents high efficiency to reduce the current stress of the auxiliary switch and the reverse current of main switch by adding a diode to the conventional ZVT converter. The prototype of 640[W], 100[kHz] system using MOSFET is implemented for this experimental verification.

A Study on PFC Buck-Boost AC-DC Converter of Soft Switching (소프트 스위칭형 PFC 벅-부스트 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.465-471
    • /
    • 2007
  • The system efficiency of the proposed Buck-Boost AC-DC converter is increased by soft switching method. The converter includes to merit of power factor correction (PFC) from sinusoidal control of input current. The switching behavior of control switches operates with soft switching by partial resonance, and then the proposed converter has high system efficiency with decrement of switching power loss. The input current waveform in proposed converter is got to be a sinusoidal form of discontinuous quasi-pulse row in proportion to magnitude of AC input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity. The output voltage of the converter is regulated by PWM control technique. The discontinuous mode action of current flowing into inductor makes to simplify control method and control components. The proposed PFC Buck-Boost converter is analyzed to compare with the conventional PFC Buck-Boost converter. Some computer simulative results and experimental results confirm to the validity of the analytical results.

Digital Current Control Scheme for Boost Single-Phase PFC Converter Based on Virtual d-q Transformation (가상 d-q 변환을 이용한 승압형 단상 PFC 컨버터의 디지털 전류 제어 방법)

  • Lee, Kwang-Woon;Kim, Hack-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.54-60
    • /
    • 2020
  • A digital current control scheme using virtual d-q transformation for a boost single-phase power factor correction (PFC) converter is proposed. The use of virtual d-q transformation in single-phase power converters is known to improve current control performance. However, the conventional virtual d-q transformation-based digital current control scheme cannot be directly applied to the boost single-phase PFC converter because the current and average voltage waveforms of the inductor used in the converter are not sinusoidal. To cope with this problem, this study proposes a virtual sinusoidal signal generation method that converts the current and average voltage waveform of the inductor into a sinusoidal waveform synchronized with the grid. Simulation and experimental results are provided to show that the virtual d-q transformation-based digital current control is successfully applied to the boost single-phase PFC converter with the aid of the proposed virtual sinusoidal signal generation method.

Characteristics of a High Power Factor Boost Converter with Continuous Current Mode Control

  • Kim, Cherl-Jin;Jang, Jun-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.65-72
    • /
    • 2004
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The input active power factor correction (APFC) circuits can be implemented in either the two-stage approach or the single-stage approach. The two-stage approach can be classified into boost type PFC circuit and dc/dc converter. The power factor correction circuit with a boost converter used as an input power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, the regulation performance of output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results.

Analysis of Current Ripple for Two-Phase Interleaved Boost PFC (2상 인터리브드 부스트 PFC의 전류 리플 해석)

  • Kim, Jung-Hoon;Jeon, Tae-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.3
    • /
    • pp.122-128
    • /
    • 2012
  • An interleaved boost converter has many advantages such as current ripple reduction, switching effective double, etc. Due to these advantages, the interleaved boost converter applies to the power factor correction circuit. However, there are almost no analysis results because the input voltage and current are time-varying system in the power factor correction application. Therefore, in this paper, the current ripples of the power factor correction circuit using single-phase boost dc-dc converter and 2-phase interleaved boost dc-dc converter are compared and analyzed in detail. In order to verify the validity, computer simulation and experimental are performed.

A study of AC-DC PFC ZVS Interleaved Boost Converter (AC-DC PFC ZVS 인터리브 승압형 컨버터에 관한 연구)

  • Lee, Sung-Ho;Kim, Yong;Seo, Sang-Hwa;Kwon, Soon-Do;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1224-1225
    • /
    • 2011
  • This paper proposes a novel soft-switching interleaved boost converter composed of two shunted elementary PFC boost conversion units and an auxiliary inductor. This converter is able to turn on both the active power switches at zero voltage to reduce their switching losses and evidently raise the conversion efficiency and power factor. Since the two parallel-operated elementary boost units are identical, operation analysis and design for the converter module becomes quite simple. A laboratory test circuit is built, and the circuit operation shows satisfactory agreement with the theoretical analysis. The performance of the proposed PFC rectifier was evaluated on an experimental 300[W] PFC prototype.

  • PDF