• Title/Summary/Keyword: boom

Search Result 629, Processing Time 0.032 seconds

A Study on Wheel Design for a Self-Propelled Boom Sprayer considering the Rice Plant Damage and Wheel Track-Plant Damage Simulation of Various Steering Vehicles (수도작용 자주식 붐방제기의 작물손상을 고려한 차륜설계 및 조향형식별 차륜궤적 -작물손상의 시뮬레이션)

  • 정창주;김형조;조성인;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • v.21 no.1
    • /
    • pp.34-43
    • /
    • 1996
  • The present pesticide application technology widely used with a power sprayer in Korea is assessed as the problem awaiting solution in the point of view of its ineffectiveness, inefficiency, and environmental contamination. As one approach to get rid of these problems, the boom spraying with ultra-low volume and precision application technology has been recommended. The study was undertaken to investigate plants damages incurred by the self-propelled boom-sprayer vehicle, to develop the design criteria of vehicle wheel, and to compare plant damages caused by the front wheel steering vehicle, the 4-wheel drive vehicle and the articulated vehicle, by the computer simulation. The experiment showed that the amount of damaged plants incurred by the self-propelled boom sprayer were about 0.29% in average in the field size of 100m$\times$50m(0.5ha), about 60~80% of which recovering while growing. The recommandable wheel size was analyzed to be 70~100cm in diameter, 8~15cm in width from the vehicle-plant-soil relationship. The simulation on damaged plants anticipated to be incurred by various steering vehicles showed that the smaller the turning radius, the lesser the damaged plants within its range of 3~5m. Average plant damage rate by the front wheel steering vehicle, the 4-wheel drive vehicle and articulated vehicle was relatively assessed to be 2 : 1.8 : 1.

  • PDF

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

The Analysis of the Effect of .Wind Load on the Structural Stability of an Articulation type Container Crane (풍하중이 관절형 붐을 가진 컨테이너 크레인의 구조 안정성에 미치는 영향 분석)

  • Lee Jung-Myung;Lee Seong-Wook;Han Dong-Seop;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.235-240
    • /
    • 2005
  • Articulation type container cranes are the boom forms an inverted L shape when raise. The inner boom section is nearly vertical when raise and the outer boom section is nearly horizontal. Articulation type container cranes were developed as a lower height crane to meet aircraft clearance requirements. Because the height of an Articulation type container crane is about 70m, the crane is subjected to the effect of Wind load. Therefore, the problem on the effect of Wind load is receiving carefully study. The researches for the effect of wind load on the structural stability of a conventional container crane are conducted. In this study, we carried out the investigation for an articulation type container crane. When a wind load is applied to a container crane, we analyzed the reaction force distribution at each supporting point of a crane with respect to a wind load direction and the effect of the change of the machinery house location on the structural stability rf a crane by carrying out Finite Element Analysis.

  • PDF

A Prediction Method of Tension on Containment Boom for Marine Floating Debris (부유물 차단막에 작용하는 장력추정에 관한 실험연구)

  • Yu J. S.;Sung H. G.;Ryu J. M.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.63-71
    • /
    • 2003
  • The main functions of containment boom for marine floating debris are to prevent spreading of the marine floating debris and to effectively collect the trash skimmer. The design characteristics of containment boom for marine floating debris in wave, current and wind are investigated. The response of a containment boom on the current is a function of a number of parameters, such as geometric characteristics, buoyance/weight ratio and towing velocity. To understand the relationship between these design parameters more clearly, a series of tests with three models with the variation of current speed and gap ratio was conducted. The model tests results are developed to new numerical equation that is tension prediction method of containment boom for marine floating debris. Also its is compared with open sea experimental results.

  • PDF

A Research on Aerial Refueling Type and Flight Testing of Boom-Receptacle Systems for a Fixed-wing Aircraft (고정익 항공기 공중급유 유형 및 Boom-Receptacle 시스템 비행시험 평가 방안 연구)

  • Kim, Dae-wook;Kim, Chan-jo
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.70-80
    • /
    • 2022
  • An aerial refueling provides for extension of operational time and range for aircraft and enhances mission effectiveness, hence it application by most military aircrafts. The receiver aircraft should have the aerial refueling clearance that is established by performing technical and operational compatibility assessments to certify it for aerial refueling with a specific tanker model. The compatibility assessment includes aerial refueling handling qualities, functional, fuel, lighting system testing and it is finally verified through flight testing. However, since aerial refueling compatibility assessments have never been performed in Korea, there is no experience to determine the test requirements and the scope and size of the test program for a new development aircraft. This paper therefore introduces the common techniques of aerial refueling and aerial refueling flight test methods to understand the aerial refueling FCS (Flight Control System), OFP (operational flight program) and system validation, and aerial refueling envelope clearance of a fixed wing aircraft for a boom and receptacle refueling system that is being introduced into Korea Air Force.

Study on the Nozzle Spacing in the Boom-Type Nozzle System (Boom-Type Nozzle System의 분두배치(噴頭配置)에 관(關)한 연구(硏究))

  • Seo, Jeoung Duk;Lee, Sang Woo
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.212-223
    • /
    • 1981
  • The proper nozzle spacings have been tried to determined the better evenness of distribution on the development of the boom type nozzle system with three nozzles made in Korea-disk type, cap type and bolt type. The operating pressure has been changed in 7 levels ($2kg/cm^2-8kg/cm^2$) and the operating height in 3 levels (30, 40, 50cm) to find characteristics of deposit pattern and the proper spacing of each nozzle was examined and computed. The results of this study were as follows; 1. The CU(%) of the deposit distribution was improved with the operating pressure of $5kg/cm^2$ or $6kg/cm^2$ in Nozzle A with 80% and Nozzle C with 83%, and $7kg/cm^2$in Nozzle B with 80% 2. The better deposit distribution was got ten at operating height 40cm with CU 86% in Nozzle A, and 50cm in both Nozzle B, C with 80% 3. The spray deposit distribution was getting of improvement with decrease of nozzle spacing, nevertheless about half diameter of the spraying circle was recommended in regard to the cost and the work performance. 4. Improvement of quality of nozzles tested in this research may be required not to be less than their CU 90% in the use as boom-type nozzle system.

  • PDF

Development of the Automatic Fishing System for the Anchovy Scoop nets (I) - The hydraulic winder device for the boom control - (멸치초망 어업의 조업자동화 시스템 개발 (I) -챗대 조작용 유압 권양기 개발-)

  • 박성욱;배봉성;서두옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.166-174
    • /
    • 2000
  • Anchovy, EngrauEis japonica scoop nets are used in the coastal of Southern and Cheju of Korea. Especially in the Cheju, the fishing gear of scoop nets consists of upper boom, lower boom, pressing stick and bag net. They are operated by fishing boats of 6 to 10 ton class and 8 persons on board. The booms are controlled by side drum, and the net and pressing stick are hauled by only human power in operating. Therefore this fishery needs to large labor and heavy human power and has much risk. Three kinds of hydraulic winding device which controls two booms was designed and manufactured to reduce heavy labor force of scoop nets, and trial in the sea was carried out to test their performances using the commercial fishing boats of 6 ton class. The proper capacity of hydraulic pump and motor were determined by model test of boom 1/5 scale. The results obtained are as follows, 1. Tension of boom which is being drawn was the strongest and 187.5kgf when the boom's end is in the depth of 4m under the water. 2. The hydraulic motor of the fittest kind of winder has the least leakage per time than the other kinds. 3. In the best type of several winder devices, when the pressure difference was fixed $130kg/^2$ for the safe fishery, the winding velocity of boom line was 2m/sec, is faster 0.48/sec than traditional fishing method and this winder can catch the anchovy of 1.6 tonnage. 4. As a result, the crew were decreased from 8 to 6 and the problem of heavy human power and risk on fishing operation were solved by using the this winder.

  • PDF