• Title/Summary/Keyword: bone tissue cells

Search Result 606, Processing Time 0.025 seconds

Fine Needle Aspiration Cytology of Unusual Epidermoid Cyst with Diffuse Parakeratosis and Aggressive Growth - A Case Report - (미만성 이상각화증을 동반한 침습성 표피양 낭의 세침흡인 세포학적 소견 - 1예 보고 -)

  • Nam, Hae-Joo
    • The Korean Journal of Cytopathology
    • /
    • v.10 no.1
    • /
    • pp.85-89
    • /
    • 1999
  • An extremely unusual case of epidermoid cyst showing diffuse parakeratosis and aggressive clinical behavior is presented. A destructive bone lesion with surrounding ill-defined soft tissue lesion was found by computed tomography in a 63 year-old man complaining of painful swelling of the right buttock. He had a history of surgical excision twice for epidermoid cysts of soft tissue of the right hip during recent one year On aspiration cytology, the aspirate was highly cellular and mostly composed of desquamated nucleated squamous cells. Operation finding revealed that the iliac bone was Irregularly destroyed and filled with gray-white cheesy material and necrotic bone bedris. Adjacent gluteus muscle showed scattered gray-white lesions. The curettage specimen showed bone necrosis and desquamated squamous cells filling the marrow spaces. The lesion within muscle revealed epidermoid cyst with diffuse parakeratosis.

  • PDF

Anti-inflammatory Effect of Methanol Extract from Safflower Seeds

  • Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • v.41 no.2
    • /
    • pp.83-88
    • /
    • 2016
  • Periodontitis is an inflammatory disease, which destroys the connective tissue and the alveolar bone. Recently, it has been suggested that the effect of natural substances could be induced into an anti-inflammatory environment. However, the effect of Safflower seed extract (SAF-M) associated with periodontitis has not been investigated yet. Therefore, the purpose of this study was to assess the anti-inflammatory effects of SAF-M. Cytotoxicity was assessed through MTS analysis using hGF and hPDL cells. Periodontitis was induced by injecting LPS into gingival tissue on the maxillary molars of rats ($45{\mu}g$ LPS/one time, 3 times a week for 3 weeks). SAF-M was administered daily at 30 mg/kg and 100 mg/kg. Alveolar bone resorption was evaluated through the micro-CT. hGF and hPDL cells showed differential cytotoxicity in response to SAF-M at 5 mg/ml and 1 mg/ml concentrations. Micro-CT showed reduction of the alveolar bone resorption in the SAF-M treatment group. These results suggested that SAF-M is a potential therapeutic agent for periodontitis.

Current perspectives in stem cell therapies for osteoarthritis of the knee

  • Kim, Gi Beom;Shon, Oog-Jin
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.3
    • /
    • pp.149-158
    • /
    • 2020
  • Mesenchymal stem cells (MSCs) are emerging as an attractive option for osteoarthritis (OA) of the knee joint, due to their marked disease-modifying ability and chondrogenic potential. MSCs can be isolated from various organ tissues, such as bone marrow, adipose tissue, synovium, umbilical cord blood, and articular cartilage with similar phenotypic characteristics but different proliferation and differentiation potentials. They can be differentiated into a variety of connective tissues such as bone, adipose tissue, cartilage, intervertebral discs, ligaments, and muscles. Although several studies have reported on the clinical efficacy of MSCs in knee OA, the results lack consistency. Furthermore, there is no consensus regarding the proper cell dosage and application method to achieve the optimal effect of stem cells. Therefore, the purpose of this study is to review the characteristics of various type of stem cells in knee OA, especially MSCs. Moreover, we summarize the clinical issues faced during the application of MSCs.

Macrophagal Polykaryocytes in Inflammation, Tumor Growth, and Tissue Remodeling

  • Schepetkin, Igor-A.;Kiran, Kondaragil-R.;Kwon, Byoung-S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.727-738
    • /
    • 2001
  • Macrophagal polykaryocytes (MPs) are terminally differentiated multinuclear macrophage cells responsible for remodeling and resorption of bone, foreign body, and tissue deposition in inflammation. MPs are encountered only in bone and cartilagenous tissues, in which they are referred to as osteoclasts, odontoclasts, in which they are referred to as osteoclasts, odontoclasts, and septoclasts. Depending on the disease, the MPs differentiate into many morphological variants that include foreign-body giant cells, Langhans-type cells, and Touton-type cells. Morphological heterogeneity of MPs could Touton-type cells. Morphological heterogeneity of MPs could reflect the giant cell formation from phenotypically different marophage precursors by the process of fusion. At present, many cytokines, adhesion/fusion molecules, and other factors of the microenvironment have been discovered that influence the multinucleation process. Many evidences suggest that conditions in giant cell fibrohistiocytomas, which facilitate MP formation, are similar to the inflammation site of granulomatosis. MPs in the giant cell tumors and granulomatosis foci are formed in response to the factors secreted by mesenchymal cells. It is proposed that one of the first steps in vertebrate evolution could be the organization of skeleton remodeling, in which osteoclasts play a major role. In this step, the same mechanism of regulations served as a basis for the development of both osteoclast and inflammatory forms of MPs.

  • PDF

AN EXPERIMENTAL STUDY OF GUIDED BONE REGENERATION OF BONE DEFECTS IN RABBIT USING RUBBER DAM (가토에서 러버댐을 이용한 골결손부의 골조직 유도 재생술에 관한 실험적 연구)

  • Jang, Chang-Dug;Whang, Hie-Seong;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.2
    • /
    • pp.110-119
    • /
    • 1999
  • The principle of guided tissue regeneration (GTR), as applied to bone healing, is based on the prevention of connective tissue from entering the bony defect during the healing phase. This allows the slower bone producing cells to migrate into and reproduce bone within the defect. The principle of guided tissue regeneration has demonstrated a level of success in regenerating bone defect. Several types of membrane barrier, each one with distinct properties, have been utilized to apply this principle in bone regeneration. The purpose of this study is to introduce and discuss the attributes of rubber dam as a barrier membrane and evaluate whether improved bone regeneration can be achieved by GTR using rubber dam. In the 15 New Zealand white rabbits, full-thickness bone defects on three sites of each rabbit calvaria were made. Non membrane group served as a control and experimental group 1 was covered with rubber dam and group 2 covered with Gore-Tex$^{TM}$ membrane. Macroscopic, radiographic, microscopic examinations were made serially on 1, 2, 3, 6, 12 weeks after operation. The results were as follows: 1. Macroscopically, the control site was collapsed and filled with connective tissue throughout the experimental period. But the defects of experimental groups 1 and 2 were filled with bone-like mass and showed the hard consistency on palpation. 2. Radiographically, the early new bone formation appeared similarly from the host bone in groups 1 and 2. 3. Microscopically, there were much connective tissue at the central part of control site but the defect of group 1 and 2 was filled with the mature bony trabeculae on the 12th week. This results suggest that rubber dam can be effectively used as a barrier membrane for guided bone regeneration.

  • PDF

Preparation and Characterization of Ipriflavone-Loaded Poly(L-lactide-co-glycolide) Scaffold for Tissue Engineered Bone (조직공학적 골을 위한 애프리플라본을 함유한 다공성 지지체의 제조 및 그 특성)

  • Jang, Ji-Wook;Lee, Bong;Han, Chang-Whan;Lee, Il-Woo;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.226-234
    • /
    • 2003
  • Ipriflavone (IP), a non-hormonal isoflavone derivative, has been shown to interfere with bone remodeling by inhibiting bone resorption and stimulating bone formation. IP consistently increased the amount of Ca incorporated into the cell layer by mesenchymal stem cells (MSCs). In this study, we developed the novel IP loaded poly(L-lactide-co-glycolide) (PLGA) scaffolds for the possibility of the application of the tissue engineered bone. IP/PLGA scaffo1ds were prepared by solvent casting/salt leaching method and were characterized by porosimeter, scanning electron microscopy, determination of residual salt amount, differential scanning calorimetry, and X-ray diffractometer, respectively. IP/PLGA scaffolds were implanted into the back of athymic nude mouse to observe the effect of IP on the osteoinduction compared with control PLGA scaffo1ds. Thin sections were cut from paraffin embedded tissues and histological sections were stained H&E, von Kossa, and immunohistochemical staining for Type I collagen and osteocalcin. It can be observed that the porosity was above 91.7% and the pore size was above 101 $\mu\textrm{m}$. Control scaffo1d and IP/PLGA scaffo1ds of 50% IP were implanted on the back of athymic nude mouse to observe the effect of IP on the induction of cells proliferation for 9 weeks. The evidence of calcification, osteoblast, and osteoid from the undifferentiated stem cells in the subcutaneous sites and other soft connective tissue sites having a preponderance of stem cells has been observed. From these results, it seems that IP plays an important role for bone induction in IP/PLCA scaffolds.

A Study of Adaptive Bone Remodeling by Cellular Automata Method (복잡계의 세포자동화법을 이용한 뼈의 적응적 재구축에 관한 연구)

  • Moon, Byung-Young;Park, Jung-Hong;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1103-1109
    • /
    • 2003
  • An adaptive bone remodeling is simulated by using the cellular automata (CA) method. It is assumed that bone tissue consist of bone marrow, osteoclast, osteoblast cell or osteoprogenitor cell. Two types of local rule are adopted; those are the metabolism rule and adaptive bone formation rule. The metabolism rule is based on the interactions of cells and the bone formation rule is based on the adaptation against the mechanical stimulus. The history of load and memory of mechanical stimulus are also considered in the local rules. As a result, the pattern of distribution of the bone tissue is dynamically adequate and it is similar to intact cancellous bone.

Review on the Correlation between Bone Mass, Skinfold Thickness and the Volume of Urine collagen Peptide in Postmenopausal Women (폐경 후 여성의 골량과 피부두겹두께 및 뇨 콜라겐펩타이드 양의 관련성에 대한 고찰)

  • Park, Mi-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.3 no.2
    • /
    • pp.91-103
    • /
    • 2001
  • The bone is composed of the bone matrix of collagen and hydroxyapatite, the mixture of calcium and phosphours. The bone tissue is considered to the special connective tissue that possesses extracellular matrix made by collagen fiber deposited with mineral complex. In order to maintain bone mass measured by the sum of bone matrix and hydroxyapatite, bone resorption by osteoclast during lifetime and bone remodeling to form bone by osteoblast in its resorption region repeat continuously. The osteoblast has a mesodermic fetal origin like fibroblast for the formation of form tissues. Two cells express identical genes and synthesize the identical collagen type I as the major component of the formation of bone matrix and skin. Therefore, it is considered that the decrease of skinfold thickness and the decrease of bone mass related to the age, the change of two tissues composed of collagen type I is caused by the same genetic mechanism. The decrease of bone mass is caused by the change of the amount and structure of bone matrix by several factors and the amount of minerals deposited on bone matrix. Especially, in case of female, the deficiency of estrogen by menopause makes these changes rapidly increased. The decrease of bone mass and skinfold thickness is due to the decrease of the amount of collagen and its structural change the common component of bone tissue and skin tissue. Therefore, the relationship of the amount of cross-linked peptide N-telopeptide, collagen metabolite which excretes as urine. Based upon the proved results about the significant relationship of bone mass, the amount of bone collagen, the amount of skin collagen and skinfold thickness, the bone mass may be expected through a facile determination of skinfold thickness.

  • PDF

A STUDY OF REGENERATION ENHANCEMENT OF DESTRUCTED PERIODONTAL TISSUE (파괴된 치주조직의 재생촉진에 관한 연구)

  • Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.407-417
    • /
    • 1995
  • In order to evaluate the effect of platelet-derived growth factor(PDGF-BB) and guided tissue regeneration(GTR) technique on the regeneration of destructed periodontal tissue,intentional through-and-through furcation defects(4mm in height) were made on both mandibular 2nd and 4th premolars of 8 adult male dogs(30-40lb). Experimental group 1 was composed of the premolars that were treated by only topical application of PDGF-BB with 0.05M acetic acid without any barrier membrane. Experimental group 2 was composed of the premolars that were treated by GTR with expanded polytetrafluoroethylene membrane(ePTFE : Gore-tex periodontal material, USA). Experimental group 3 was composed of the premolars that were treated by GTR with ePTFE after topical application of PDGFBE. Control group was composed of the premolars that were treated by coronally positioned flap operation only without use of PDGF-BB and ePTFE membrane. All ePTFE membranes were carefully removed 4 weeks after regenerative surgery, and all experimental animals were sacrificed 8 weeks after regenerative surgery. The light microscopic findings were as follows ; (1) In experimental group 1, rapid new bone formation along the-root surface with multiple ankylosis and root resorption by multinucleated giant cells, and dense connective tissue in the central portion of the furcation defects were observed. (2) In experimental group 2, it was observed that the furcation defects were filled with newly formed bone, Sharpey's fibers were embedded into new cementum on root dentin of furcation fornix area, but the central portion and the area under furcation fornix were still filled with dense connective tissue. (3) In experimental group 3, the furcation defects were regenerated with newly formed dense bone and regular periodontal ligament with Sharpey's fibers embedded into newly formed cementum and bone underneath fornix area. (4) In control group, unoccupied space, apical migration of epithelium, dense infiltration of inflammatory cells in subepithelial connective tissue in relation to heavy plaque accumulation, and root resorption by inflammatory reaction were shown, but any new cementum formation on resorbed dentin surface could not be observed. The present study demonstrated that the combined therapy of PDGF-BB and GTR could enhance the regeneration of destructed periodontal tissue.

  • PDF

THE EFFECT OF THE BIORESORBABLE COLLAGEN MEMBRANE ON THE REGENERATION OF BONE DEFECT BY USING THE MIXTURE OF AUTOGRAFT AND XENOGRAFT BONE

  • Lee Jung-Min;Kim Yung-Soo;Kim Chang-Whe;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.325-341
    • /
    • 2003
  • Statement of problem: In cases where bony defects were present, guided bone regenerations have been performed to aid the placement of implants. Nowadays, the accepted concept is to isolate bone from soft tissue by using barrier membranes to allow room for generation of new bone. Nonresorbable membranes have been used extensively since the 1980's. However, this material has exhibited major shortcomings. To overcome these faults, efforts were made to develop resorbable membranes. Guided bone regenerations utilizing resorbable membranes were tried by a number of clinicians. $Bio-Gide^{(R)}$ is such a bioresorbable collagen that is easy to use and has shown fine clinical results. Purpose: The aim of this study was to evaluate the histological results of guided bone regenerations performed using resorbable collagen membrane($Bio-Gide^{(R)}$) with autogenous bone, bovine drived xenograft and combination of the two. Surface morphology and chemical composition was analyzed to understand the physical and chemical characteristics of bioresorbable collagen membrane and their effects on guided bone regeneration. Material and methods: Bioresorbable collagen membrane ($Bio-Gide^{(R)}$), Xenograft Bone(Bio-Oss), Two healthy, adult mongrel dogs were used. Results : 1. Bioresorbable collagen membrane is pure collagen containing large amounts of Glysine, Alanine, Proline and Hydroxyproline. 2. Bioresorbable collagen membrane is a membrane with collagen fibers arranged more loosely and porously compared to the inner surface of canine mucosa: This allows for easier attachment by bone-forming cells. Blood can seep into these spaces between fibers and form clots that help stabilize the membrane. The result is improved healing. 3. Bioresorbable collagen membrane has a bilayered structure: The side to come in contact with soft tissue is smooth and compact. This prevents soft tissue penetration into bony defects. As the side in contact with bone is rough and porous, it serves as a stabilizing structure for bone regeneration by allowing attachment of bone-forming cells. 4. Regardless of whether a membrane had been used or not, the group with autogenous bone and $Bio-Oss^{(R)}$ filling showed the greatest amount of bone fill inside a hole, followed by the group with autogenous bone filling, the group with blood and the group with $Bio-Oss^{(R)}$ Filling in order. 5. When a membrane was inserted, regardless of the type of bone substitute used, a lesser amount of resorption occurred compared to when a membrane was not inserted. 6. The border between bone substitute and surrounding bone was the most indistinct with the group with autogenous bone filling, followed by the group with autogenous bone and $Bio-Oss^{(R)}$ filling, the group with blood, and the group with $Bio-Oss^{(R)}$ filling. 7. Three months after surgery, $Bio-Gide^{(R)}$ and $Bio-Oss^{(R)}$ were distinguishable. Conclusion: The best results were obtained with the group with autogenous bone and $Bio-Oss^{(R)}$ filling used in conjunction with a membrane.