• Title/Summary/Keyword: bone mineral content(BMC)

Search Result 49, Processing Time 0.021 seconds

Effect of Soy Protein and Exercise on Bone Mineral Density and Bone Mineral Content in Growing Male Rats

  • Park, Mi-Ja
    • Journal of Community Nutrition
    • /
    • v.6 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • The purpose of this study was to examine the effects of dietary protein and exercise on bone mineral density and bone mineral content of growing male rats. Forty male, Sprague-Dawley rats(age 21 days) were assigned to four groups that underwent 9 weeks of experimental treatment. Animals were assigned to one of two exercise treatments (treadmill running or sedentary). The exercise and nonexercise group were fed a diet containing casein or soy with rich isoflavones (3.4mg/g protein). The exercise group ran on a rodent treadmill(speed of 15m/min for 30min) three days per week during the 9-week study period. All rats were fed an experimental diet and deionized water ad libitum for 9 weeks. Total bone mineral density (BMD), total bone mineral content (BMC), total body calcium, spine BMD and BMC, and femur BMD and BMC were determined by using dual energy x-ray absorptiometry (FIXI-mus, GE Lunar Radiation Cooperation, Madison, WI, USA). The soy diet group appears to have a significantly higher total BMD/weight and total BMC/ weight, spine BMD/weight, spine BMC/weight, femur BMD/weight and femur BMC/weight compared to the casein group in nonexercise and exercise. The exercise group had significantly greater total BMD/weight and BMC/ weight, spine BMD/weight and BMC/weight, femur BMD/weight and BMC/weight compared to the nonexercise group when the protein source was casein. The exercise combined soy group had significantly greater total BMD/weight and BMC/weight, spine BMD/weight and BMC/weight, femur BMD/weight and BMC/weight, compared to the exercise combined casein group. The results indicate that exercise had a positive influence on bone mineral density and bone mineral content and soy significantly affect on bone mineral density and bone mineral content for the 9 weeks experimental period. It can be concluded that exercise combined with a soy diet is most beneficial for acquisition of spine bone mineral density in young growing male rats. This convincing evidence suggests that a change in life style such as increasing exercise and consumption of soy protein is a practical strategy for significantly reducing the incidence of osteoporosis.

Effect of Exercise and Calcium Supplementation on Bone Mineral Density and Bone Mineral Content in Growing Female Rats

  • Park, Mi-Ja
    • Journal of Community Nutrition
    • /
    • v.4 no.3
    • /
    • pp.195-201
    • /
    • 2002
  • The purpose of this study was to examine the effects of dietary calcium supplementation and exercise on bone mineral density and bone mineral content of growing female rats. The exercise and control group were fed a diet containing 0.5% calcium and Ca supplementation group were fed a diet containing 1.0% calcium diet. The exercise group ran on a rodent treadmill (speed of 15m/min for 30 min) three days per week during the 3-week study period. Bone mineral density (BMD) and bone mineral content (BMC) of spine and femur were determined by using dual energy x-ray absorptiometry (FIXI-mus, GE Lunar Radiation Cooperation, Madison, WI, USA). The exercise group had significantly greater (6.25%) spine BMD compared to the nonexercise group and the exercise group had but not significantly greater spine BMC (7.1%) compared to nonexercisers. Femur BMD and BMC divided by the rats final body weight appears to have a higher BMD (7.5%) and BMC (4.5%) in the exercise group, which indicates that exercise had a positive influence on femur bone mineral density and bone mineral content. The supplementation of calcium did not significantly affect spine and femoral BMC and BMD for the 3 weeks experimental period. It can be concluded that when calcium intake meets the recommended, exercise is beneficial for acquisition of spine bone mineral density in young growing female rats. (J Community Nutrition 4(3) : 195∼201, 2002)

Effects of Vitamin D Supplementation on Bone Mineral Density in Growing Rats (식이 내 비타민 D 강화가 성장기 흰쥐의 골밀도에 미치는 영향)

  • Choi Mi-Ja;Kang Yu-Jung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.3
    • /
    • pp.292-298
    • /
    • 2006
  • Modification of the diet during childhood and adolescence may be an effective strategy for maximizing the peak bone mass. Many supplementation studies have suggested a positive effect of the increased vitamin D intake on the bone mineral status in the elderly. However to date all studies have been conducted on old men and postmenopausal women. The aim of this study was to examine the effects of vitamin D supplementation on the bone mineral density and bone mineral content in growing rats. Twenty Sprague-Dawley female rats were divided into two groups; Control, and vitamin D supplementation. The bone mineral density(BMD) and bone mineral content(BMC) were measured using PIXImus in the spine and femur. Vitamin D supplementation did not affect the level of weight gain, mean food intake and food efficiency ratio. In addition, vitamin D supplementation had no added effect on the spine and femur BMD, and BMC. There were no significant differences in the spine BMD/weight and BMC/weight between the groups, but the spine BMD/weight and BMC/weight was 11 % higher in the vitamin D supplementation group. The femur BMD/weight and femur BMC/weight were significantly higher in the vitamin D supplementation group 9 weeks after the experiment. These results provide evidence of the beneficial effects of vitamin D supplementation on the BMD during the growth period.

  • PDF

Factors Associated with Changes in Bone Mineral Content among Girls in Early Pubertal Age (사춘기 초기 여자 어린이의 골질량 변화와 이에 영향을 미치는 요인 분석)

  • Yun, So-Yoon;Park, Min-Kyoung;Paik, Hee-Young;Joung, Hyo-Jee
    • Journal of Nutrition and Health
    • /
    • v.40 no.1
    • /
    • pp.69-77
    • /
    • 2007
  • The study was conducted to investigate the factors associated with bone mineral content (BMC) changes among early pubertal aged girls. Two hundred and thirty girls between 9 to 11 years of age participated in (our surveys over 2 year period. During each survey, dietary intakes were collected with 3-day food records, BMC of left leg's calcaneus were measured by PIXI (Lunar Ltd.) and body composition was measured by bioimpedance method (Inbody 3.0 Biospace Co. Ltd, Seoul, Korea). Mean values of BMC increased in consecutive measurements -1.48 g, 1.54 g, 1.61 g and 1.66 g. The change of BMC between the first and last measurements was significantly positively correlated with % body fat, negatively correlated with BMC at the baseline (p < 0.05). Change of BMC was also significantly positively correlated with % change of lean mass and mineral mass between the first and last measurements. Nutrient intakes during the study period were calculated as mean daily intakes from all surveys. Mean daily intakes of Vit. C and Vit. $B_6$ were positively and isoflavone intake was negatively correlated with changes of BMC (p < 0.05). In stepwise regression of BMC change with body composition and nutrient intakes, baseline values of BMC, weight, BMI and age, % change of mineral mass during the study period, mean intakes of isoflavone, Vit. $B_6$, protein, carotene and zinc were significant explanatory variables ($R^2=0.38$, p <.001, F = 32.39). The results imply that the change of BMC among early pubertal aged girls are associated with some body composition and intakes of certain nutrients.

Effects of Nutrient Intake, Bone Mineral Density and Bone Mineral Content in Ovariectomized Women (난소 절제 여성의 영양소 섭취 상태가 골밀도 및 골무기질 함량에 미치는 영향)

  • 최미자
    • Journal of Nutrition and Health
    • /
    • v.36 no.2
    • /
    • pp.167-174
    • /
    • 2003
  • This study investigated associations between nutrient intake, lumbar bone mineral density (BMD) , and bone mineral content (BMC) among 33 ovariectomized women (mean age =47.2 y) . Forty-five premenopausal women participated as a control group. The BMD and BMC of the lumbar spine (L$_2$-L$_4$) were measured by dual energy x-ray absorptiometry. Nutrient intake was estimated by the convenient method and a quantitative food frequency questionnaire was designed for this study that included the most commonly consumed foods sources of calcium. Participants were asked to identify all daily physical activities, and the number of hours per activity. The participants were also grouped by calcium intake. The total calcium intake of all participants was estimated by dietary calcium intake and then the subjects were divided into quartiles to assess the lumbar BMD and BMC of the highest quartile and the lowest quartile of calcium intake. The ovariectomized women consumed 602 mg/d of calcium which is 86% of RDA. There were significant differences in lumbar BMD and BMC between control and ovariectomized group. Within ovariectomized group the highest quartile calcium intake group had significantly greater lumbar bone mineral density and bone mineral content than the lowest quartile calcium intake group. Correlation analysis revealed that the ALP was positively associated with calcium index in control women, while ALP was positively associated with energy intake in ovariectomized women. And body weight was positively correlated with the spinal BMD and BMC in all women. The spinal BMD was negatively associated with menarche age, number of child, and the age of last child delivery, and age in control women. However, neither menarche age nor the age of last child delivery were associated with both spinal BMD in ovariectomized women. These results confirmed that ovariectomized and low calcium intake is associated with poor bone mineral density. Energy and calcium intake and adequate body weight should be recommended in ovariectomized women to prevent osteoporosis.

Effects of Isoflavones on Bone Mineral Density and Bone Mineral Content in Ovariectomized Rats (이소플라본이 난소절제 쥐에서 골밀도와 골무기질 함량에 미치는 영향)

  • Choi Mi-Ja;Kang You-Jung
    • Journal of Nutrition and Health
    • /
    • v.39 no.3
    • /
    • pp.236-243
    • /
    • 2006
  • A recent study reported that a diet rich in isoflavones is beneficial for bone formation in growing rats. It therefore seemed desirable to find out whether the beneficial effect of isoflavones in ovariectomized rats could also be reproduced with same amount of isoflavones which used for growing rats. To study the effect of isoflavones, an equal amount of isoflavones which used for growing rats, on bone mineral density and bone mineral content in ovariectmized rats were performed. Forty female Sprague-Dawley rats (body weight $210{\pm}5g$) were divided into two groups, ovariectomy and sham groups, which were each randomly divided into two subgroups that were fed casein and casein supplemented with isoflavones diets for 9 weeks after operation. All rats were fed on experimental diet and deionized water ad libitum for 9 weeks. Bone mineral density (BMD) and bone mineral content (BMC) were measured using PIXImus (GE Lunar Co, Wisconsin) in spine and femur. Serum alkaline phosphatase activity (ALP) and osteocalcin and urinary DPD crosslinks value were measured as markers of bone formation and resorption. The results of this study indicate that body weight gain and food intake were higher in ovariectomy groups than in sham groups regardless of diets. Serum Ca concentration was lower in ovariectomy groups than in SHAM groups. Serum ALP, osteocalcin, and crosslink value were increased in ovariectomy groups. Spine BMD/weight, femur BMD/weight, and femur BMC/weight of ovariectomy groups were significantly lower than SHAM groups after 9 weeks. However, isoflavones supplemented group in ovariectomy groups, serum ALP and osteocalcin concentrations, spine BMD/weight and spine BMC, femur BMD/weight and femur BMC/weight were significantly increased after 9 weeks. In conclusion, the beneficial effect of isoflavones on bone in ovareiectomized rats was shown on 9 weeks after feeding with an equal amount of isoflavones supplementation which used for growing rats.

Effects of Exercise on Bone Mineral Density and Bone Mineral Content in Postmenopausal Women

  • Choi Mi-Ja
    • Journal of Community Nutrition
    • /
    • v.7 no.2
    • /
    • pp.93-99
    • /
    • 2005
  • This study investigated associations between exercise habit and bone mineral density (BMD) and bone mineral content (BMC) in postmenopausal women. The BMD and BMC of the spinal skeleton was measured by dual energy x-ray absorptiometry. Exercise and energy expenditure of physical activity were estimated by questionnaire. For exercise activities, subjects were asked to identify all exercises they have participated in. The subjects were further asked to estimate the number of years of participation, the number of weeks per year, the number of times per week, and the number of hours per time. Subjects were then categorized into exercise (more than 3 times/wk, more than 30min per session exercise (n = 47) and nonexercise group (n = 72). Results indicated that there were no significant differences in BMD and BMC when comparisons were made between subjects in exercise habit, a general exercise group and a nonexercise control group. However, when exercise subjects were divided into weight-bearing and nonweight-bearing groups, significant differences were found. These results suggest that weight-bearing exercise positively influences bone mineral density and bone mineral content in postmenopausal women. Sedentary women should be encouraged to adopt a weight-bearing exercise to maintain the health of their skeletons. Exercise interventions are practical and feasible for healthy women and should be encouraged at the earliest possible age. Our findings lend support to recommendations for physical activity and weight-bearing exercise as a means of osteoporosis prevention.

Effects of Rubus coreanus-Cheonggukjang on Bone Mineral Density and Bone Mineral Content in Growing Rats

  • Jung, Yun-Jung;Choi, Mi-Ja
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2015
  • The purpose of the present study was to investigate the bone-conserving effects of Rubus coreanus-Cheonggukjang (RC-CGJ) supplemented with more intensified phytochemicals compared to general Cheonggukjang (CGJ) in growing rats. Eighteen rats were divided into 3 treatment groups (Control, CGJ, and RC-CGJ) and were given experimental diets for 9 weeks. All of the rats in this study were fed a AIN-93G-based diet. Both CGJ groups were fed with 33.1% CGJ and RC-CGJ powder, respectively. The results of this study indicate that weight gain, mean food intake, and food efficiency ratio were not significantly different by the experimental diets among all groups. Spine bone mineral density (BMD) and femur BMD were not significantly different by the experimental diets. Spine bone mineral content (BMC) was significantly higher in the RC-CGJ and CGJ groups than in the control group, regardless of CGJ type. The femur BMC of the CGJ supplemented group was significantly higher compared with the control group and the RC-CGJ group. Compared with the control group, spine BMD and femur BMD per weight were markedly increased in the RC-CGJ and CGJ group regardless of CGJ type. Also, spine BMC per weight was significantly higher in the RC-CGJ group than in the CGJ group. However, femur BMC per weight was significantly higher in the CGJ group than in the RC-CGJ group. It can be concluded that RC-CGJ and CGJ supplemented diets have more beneficial effects on spine and femur peak bone mass in growing rats.

Effects of Caffeine on Bone Mineral Density and Bone Mineral Content in Ovariectomized Rats (난소절제 쥐에서 카페인 첨가식이가 골밀도 및 골함량에 미치는 영향)

  • Choi, Mi-Ja;Lee, Joo-Young
    • Journal of Nutrition and Health
    • /
    • v.41 no.3
    • /
    • pp.216-223
    • /
    • 2008
  • The purpose of this study was to examine the effects of dietary caffeine supplementation on bone mineral density and bone mineral content in ovariectomized rats. Twenty eight female Sprague-Dawley rats (body weight $210\;{\pm}\;5\;g$) were divided into two groups, ovariectomy (OVX) and Sham groups, which were each randomly divided into two subgroups that were fed control and control supplemented with caffeine diets (caffeine 0.03% diets). All rats were fed on experimental diet and deionized water ad libitum for 6 weeks. Bone mineral density (BMD) and bone mineral content (BMC) were measured using PIXImus (GE Lunar Co, Wisconsin) in spine and femur. Serum alkaline phosphatase activity (ALP) and osteocalcin and urinary DPD crosslinks value were measured as markers of bone formation and resorption. The results of this study indicate that body weight gain and food intake were higher in OVX groups than in Sham groups regardless of diets. There were no differences weight gain between the control and caffeine groups in both OVX and Sham groups. Within the OVX groups, serum Ca concentration was lower in rats fed caffeine than in rats fed the control diet. Serum ALP, osteocalcin, urinary Ca, and phosphate were not different in each group. Spine BMD, spine BMD/weight, and spine BMC/weight, femur BMD/weight and femur BMC/weight of ovariectomy groups were significantly lower than Sham groups. Within the OVX group, there were no differences in spine BMD and BMC and femur BMD and BMC. These results indicate that no significant differences in spine and femur BMD were found due to 0.03% caffeine intakes in diet in OVX rats for 6 weeks. No negative effect of caffeine in 0.03% diet on bone mineral density were found in the present study. Further investigation of the relation between caffeine and bone mineral density are warranted. (KoreanJNutr2008; 41(3): 2l6~223)

The Effects of Level of Isoflavones Supplementation on Bone Mineral Density in Growing Female Rats (이소플라본 섭취수준이 성장기 암컷 쥐의 골밀도에 미치는 영향)

  • Choi Mi-Ja;Jung Yun-Jung
    • Journal of Nutrition and Health
    • /
    • v.39 no.4
    • /
    • pp.338-346
    • /
    • 2006
  • The overall purpose of this study was to investigate the effects of level of isoflavones supplementation on bone metabolism in growing female rats. The effects of level of isoflavones supplementation on bone mineral density (BMD) and bone mineral content (BMC) were inspected in this study. Forty-five rats divided into three groups: Casein, $^1/{_2}IF$, IF. The serum and urine concentrations of calcium and phosphorus were determined. BMD and BMC were estimated by using PIXImus (GE Lunar Co, Wisconsin.) in spine and femur on 3, 6, 9 weeks after feeding. This study of results were as follows: The isoflavones supplementation level did not affect weight gain, mean food intake and food efficiency ratio. The serum concentration of calcium, phosphorus were not significantly different by different level of isoflavones supplementation. The urinary calcium and phosphorus excretion were not significantly different, too. Spine and femur BMD, BMC were not significantly increased by different level of isoflavones supplementation on 3 and 6 weeks after feeding. Spine BMD and spine BMC per weight, femur BMC per weight were significantly increased in the groups $^1/{_2}IF$ and IF at the ninth week after feeding, but there was no significant difference by different level of isoflavones supplementation. Spine BMD per weight and femur BMD per weight were significantly higher in the group of IF than in the group of Casein and $^1/{_2}IF$ at the ninth week after feeding. These results suggest that the group of IF with rich isoflavones supplementation was effective to the increase of BMD spine and femur in growing female rats, respectively.