• Title/Summary/Keyword: bone matrix expression

Search Result 173, Processing Time 0.027 seconds

Therapeutic potential of BMSC-conditioned medium in an in vitro model of renal fibrosis using the RPTEC/TERT1 cell line

  • Yunji Kim;Dayeon Kang;Ga-eun Choi;Sang Dae Kim;Sun-ja Yang;Hyosang Kim;Dalsan You;Choung Soo Kim;Nayoung Suh
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.116-121
    • /
    • 2024
  • We investigated the therapeutic potential of bone marrow-derived mesenchymal stem cell-conditioned medium (BMSC-CM) on immortalized renal proximal tubule epithelial cells (RPTEC/TERT1) in a fibrotic environment. To replicate the increased stiffness characteristic of kidneys in chronic kidney disease, we utilized polyacrylamide gel platforms. A stiff matrix was shown to increase α-smooth muscle actin (α-SMA) levels, indicating fibrogenic activation in RPTEC/TERT1 cells. Interestingly, treatment with BMSC-CM resulted in significant reductions in the levels of fibrotic markers (α-SMA and vimentin) and increases in the levels of the epithelial marker E-cadherin and aquaporin 7, particularly under stiff conditions. Furthermore, BMSC-CM modified microRNA (miRNA) expression and reduced oxidative stress levels in these cells. Our findings suggest that BMSC-CM can modulate cellular morphology, miRNA expression, and oxidative stress in RPTEC/TERT1 cells, highlighting its therapeutic potential in fibrotic kidney disease.

The expression of MMP-1, -8, and -13 mRNA in the periodontal ligament of rats during tooth movement with cortical punching (백서의 치아이동 시 피질골 천공이 치주조직의 MMP-1, -8, -13 mRNA의 발현에 미치는 영향)

  • Gwack, Choon;Kim, Seong-Sik;Park, Soo-Byung;Son, Woo-Sung;Kim, Yong-Deok;Jun, Eun-Sook;Park, Mi-Hwa
    • The korean journal of orthodontics
    • /
    • v.38 no.3
    • /
    • pp.187-201
    • /
    • 2008
  • Objective: The aim of this study was to determine whether cortical punching stimulates the expression of matrix metalloproteinase-1, -8, and -13 in orthodontic tooth movement in rats. Methods: A total of 32 male sprague-dawley rats at 15 weeks old were divided into two groups of 16 rats each, to form the tooth movement with cortical punching (TMC) group and tooth movement only (TM) group. A total of 20 gm of orthodontic force was applied to rat incisors to cause experimental tooth movement. Cortical punching was performed on the palatal side near the central incisor with a 1.0 mm width microscrew in the TMC group. The duration of tooth movement was 1, 4, 7, and 14 days. Results: Measurements of the mRNA expression were selected as the means to determine the identification of expression of MMP-1, -8, and -13. In the TMC group, the expression of collagen type I was greater than that of the TM group from day 4 to day 14. Expression of TIMP-1 in the TM group was greater than that of the TMC group in the pressure side of PDL and alveolar bone cell at day 4. In the TMC group, TIMP-1 was expressed at the osteoclast, but not at the tooth surface of the TM group at day 14, Maximum induction of the mRNA of MMP-1 was observed on day 4 in the TMC group, but it was observed on day 7 in the TM group. MMP-8 mRNA of the TMC group was twice greater than that of the TM group at f days. In the TMC group, maximum induction of MMP-13 mRNA was observed on day 1. Conclusions: These findings suggested that cortical punching can stimulate remodeling of PDL and alveolar bone connective tissues during experimental orthodontic tooth movement in rats.

Effects of 1,25-dihydroxyvitamin D3 on the differentiation of MC3T3-E1 osteoblast-like cells

  • Kim, Hyun-Soo;Zheng, Mingzhen;Kim, Do-Kyung;Lee, Won-Pyo;Yu, Sang-Joun;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.1
    • /
    • pp.34-46
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the effects of 1,25-dihydroxyvitamin $D_3$ on the proliferation, differentiation, and matrix mineralization of MC3T3-E1 osteoblast-like cells in vitro. Methods: MC3T3-E1 osteoblastic cells and 1,25-dihydroxyvitamin $D_3$ were prepared. Cytotoxic effects and osteogenic differentiation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity assay, ALP staining, alizarin red S staining, and reverse transcription-polymerase chain reaction (RT-PCR) for osteogenic differentiation markers such as ALP, collagen type I (Col-I), osteocalcin (OCN), vitamin D receptor (VDR), and glyceraldehyde 3-phosphate dehydrogenase. Results: The MTT assay showed that 1,25-dihydroxyvitamin $D_3$ did not inhibit cell growth and that the rate of cell proliferation was higher than in the positive control group at all concentrations. ALP activity was also higher than in the positive control group at low concentrations of 1,25-dihydroxyvitamin $D_3$ ($10^{-10}$, $10^{-12}$, and $10^{-14}M$). RT-PCR showed that the gene expression levels of ALP, Col-I, OCN, and vitamin D receptor (VDR) were higher at a low concentration of 1,25-dihydroxyvitamin $D_3$ ($10^{-12}M$). Alizarin red S staining after treatment with 1,25-dihydroxyvitamin $D_3$ ($10^{-12}M$) showed no significant differences in the overall degree of calcification. In contrast to the positive control group, formation of bone nodules was induced in the early stages of cell differentiation. Conclusions: We suggest that 1,25-dihydroxyvitamin $D_3$ positively affects cell differentiation and matrix mineralization. Therefore, it may function as a stimulating factor in osteoblastic bone formation and can be used as an additive in bone regeneration treatment.

Maxillary sinus floor elevation using autogenous skin-derived mesenchymal stem cells in miniature pigs (미니돼지에서 자가 피부유래 간엽성 줄기세포를 이용한 상악동저 거상술)

  • Byun, June-Ho;Kang, Eun-Ju;Maeng, Geun-Ho;Rho, Gyu-Jin;Kang, Dong-Ho;Lee, Jong-Sil;Park, Bong-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • Introduction: In our previous studies, we isolated porcine skin-derived mesenchymal stem cells (pSDMSCs) from the ears of adult miniature pigs and evaluated the pluripotency of these pSDMSCs based on expressions of transcription factors, such as Oct-4, Sox-2, and Nanog. Moreover, the characteristic of mesenchymal stem cells was revealed by the expression of various mesenchymal stem cell markers, including CD29, CD44, CD90, and vimentin. The aim of this study was to evaluate in vivo osteogenesis after maxillary sinus lift procedures with autogenous pSDMSCs and scaffold. Materials and Methods: The autogenous pSDMSCs were isolated from the 4 miniature pigs, and cultured to 3rd passage with same methods of our previous studies. After cell membranes were labeled using a PKH26, $1{\times}10^{7}$ cells/$100{\mu}L$ of autogenous pSDMSCs were grafted into the maxillary sinus with a demineralized bone matrix (DBM) and fibrin glue scaffold. In the contralateral control side, only a scaffold was grafted, without SDMSCs. After two animals each were euthanized at 2 and 4 weeks after grafting, the in vivo osteogenesis was evaluated with histolomorphometric and osteocalcin immunohistochemical studies. Results: In vivo PKH26 expression was detected in all specimens at 2 and 4 weeks after grafting. Trabecular bone formation and osteocalcin expression were more pronounced around the grafted materials in the autogenous pSDMSCs-grafted group compared to the control group. Newly generated bone was observed growing from the periphery to the center of the grafted material. Conclusion: The results of the present study suggest that autogenous skin-derived mesenchymal stem cells grafting with a DBM and fibrin glue scaffold can be a predictable method in the maxillary sinus floor elevation technique for implant surgery.

Expression of osteoclastogenesis related factors in dental implant patients (치과 임플란트에서 골개조 관련인자의 발현에 관한 연구)

  • Ryu, Seong-Hee;Kim, Bang-Sin;Jung, Seung-Gon;Han, Man-Seung;Kook, Min-Suk;Ohk, Seung-Ho;Oh, Hee-Kyun;Park, Hong-Ju
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.5
    • /
    • pp.386-391
    • /
    • 2010
  • Introduction: Bone resorption is a unique function of osteoclasts. Osteoclasts are a specialized macrophage polykaryon whose differentiation is regulated principally by macrophage colony-stimulating factors, receptor activator of nuclear factor ${\kappa}B$ ligand (RANK) ligand, osteoprotegerin (OPG), and interleukins (IL). Reflecting the integrin-mediated signals, osteoclasts develop a specialized cytoskeleton that allows it to establish an isolated micro-environment between itself and the bone, wherein matrix degradation occurs by a process involving proton transport. The levels of IL-1, IL-6, OPG, and prostaglandin $E_2$ ($PGE_2$) expression were evaluated to study the correlations between dental implant teeth and the adjacent teeth. Materials and Methods: The exudate of the gingival crevice acquired from dental implants, adjacent teeth, opposite teeth and contralateral teeth of 24 patients. Results: 1. The levels of IL-1, IL-6, OPG and $PGE_2$ expression in dental implant teeth were higher than those of the contralateral teeth. 2. IL-1 revealed a higher expression level in the adjacent teeth than in dental implant teeth. 3. The dental implant teeth and adjacent teeth did not show a remarkable difference in the level of IL-1 expression. 4. All the other cytokines were strongly expressed in the dental implant compared to the adjacent teeth. Conclusion: These results suggest that there might be close correlation between dental implant teeth and adjacent teeth in terms of the expressions of cytokines that affect the development and regulation of osteoclasts.

The effect of dexamethasone on the gene expression of the bone matrix protein in the periodontal ligament cells (치주인대세포의 골기질 단백질 유전자 발현에 대한 Dexamethasone의 영향)

  • Chung, Ha-Bong;Park, Jin-Woo;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.445-456
    • /
    • 2002
  • The purpose of this study were to determine that dexamethasone(Dex) induces differentiation of periodontal ligament(PDL) cells to osteoblastic cells and to investigate expression of matrix Gla protein(MGP), which is one of bone matrix protein. The isolated human PDL cells and gingival fibroblasts were prepared and cultured. The fourth or sixth sub-passage cells were used in this experiments. control group, ascorbic acid and ${\beta}$-glycerophosphate treated group, ascorbic acid, ${\beta}$-glycerophosphate and l00nM Dex treated group, ascorbic acid, ${\beta}$-glycerophosphate, and 5 ${\mu}M$ Dex treated group were made for study. The results were as follows: Cellular morphological change of PDL cells according to time was investigated. At first, the cells exhibited confluent monolayer of spindle or polygonal appearance. The multilayer of cells were seen after 7 days of treatment. After 14 days, the cells lost polarity and were densely packed. The mineralized nodule formation was seen at 21 days in the only Dex treated PDL cell groups. In the gingival fibroblast groups and no Dex treated PDL cell groups, the mineralized nodule was not seen. The mineralized nodule formation of 5 ${\mu}M$ Dex treated group was higher than 100 nM Dex treated group. Alkaline phosphatase(ALP) activity was higher in the Dex treated PDL cell groups of 14 and 21 days than 0 and 7 days. MGP was expressed in the control and all experimental groups and the expression was constant at 0,7,14,21 day. The above results confirm that Dex is affected to differentiation of the PDL cells to osteoblastic or cementoblastic cells and has dose-dependent effect for mineralization. And, MGP is expressed in the PDL cells and is not affected to mineralization of PDL cells.

MODULATION OF IRRADIATION-INDUCED CELL DEATH BY INSULIN-LIKE GROWTH FACTOR-II IN MC3T3 OSTEOBLASTS (Insulin-like growth factor-II가 방사선에 의한 MC3T3 조골세포의 세포사멸에 미치는 영향)

  • Park, Kyeong-Lok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.6
    • /
    • pp.617-624
    • /
    • 2007
  • Insulin-like growth factor(IGF) is the most abundant growth factor in bone matrix. Recent studies have shown that it can sensitize apoptotic cell death of osteoblasts. Thus, this study investigated whether IGF-II aggravates irradiation-induced cell death of osteoblasts. Cultured MC3T3 osteoblasts were irradiated and IGF-II was added at the concentration of 50 ng/ml immediately after the irradiation. Cell viability was measured by MTT assay. Changes in cell death and cell cycle were analyzed by flow cytometry. The expression of proapoptotic gene bax and antiapoptotic gene bcl-2 was quantified by real time RT-PCR and Western blot. A dose of 30 Gy caused G2/M arrest and increased cell death through both necrosis and apoptosis, while irradiation from 4 to 10 Gy little affected cell cycle and death. IGF-II treatment reduced cell viability without stimulating cell proliferation and changing cell cycle. Combined treatment of IGF-II with irradiation decreased cell viability and proliferation and increased cell death along with G2/M arrest. These effects were not different from those of irradiation only. At transcriptional and protein levels, IGF-II treatment did not affect bax and bcl-2 expression, whereas irradiation increased the expression ofbax without changes in bcl-2. IGF-II in combination with irradiation showed similar findings. These results suggest that IGF-II could modulate apoptotic cell death through mechanisms other than an imbalance between bax and bcl-2 gene expression, although its effect was overridden by irradiation.

Gene Expression of Osteosarcoma Cells on Various Coated Titanium Materials

  • Sohn, Sung-Hwa;Lee, Jae-Bun;Kim, Ki-Nam;Kim, In-Kyoung;Lee, Seung-Ho;Kim, Hye-Won;Seo, Sang-Hui;Kim, Yu-Ri;Shin, Sang-Wan;Ryu, Jae-Jun;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.36-45
    • /
    • 2007
  • Several features of the implant surface, such as topography, roughness, and composition play a relevant role in implant integration with bone. This study was conducted in order to determine the effects of different-coatings on Ti surfaces on the biological responses of a human osteoblast-like cell line (MG63). MG63 cells were cultured on HA (Hydroxyapatite coating on Titanium), Ano (HA coating on anodized surface Titanium), Zr (zirconium-coating on Titanium), and control (non-coating on Titanium). The morphology of these cells was assessed by SEM. The cDNAs prepared from the total RNAs of the MG63 were hybridized into a human cDNA microarray (1,152 elements). The appearances of the surfaces observed by SEM were different on each of the three dental substrate types. MG63 cells cultured on HA, Ano, Zr, and control exhibited cell-matrix interactions. In the expression of several genes were up-, and down-regulated on the different surfaces. The attachment and expression of key osteogenic regulatory genes were enhanced by the surface morphology of the dental materials used.

Sparassis crispa (Wulf.) Extract Inhibits IL-1β Stimulated Inflammatory Mediators Production on SW1353 Human Chondrocytes (인간 유래 연골세포에서 꽃송이버섯 추출물의 염증성 매개인자 억제 효과)

  • Kim, Eun-Nam;Jeong, Gil-Saeng
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.4
    • /
    • pp.305-311
    • /
    • 2018
  • Osteoarthritis (OA) is the most common form of joint disease, characterized by articular cartilage, osteonecrosis, and osteochondral bone erosion. It is an early, progressive disease that combines joint stiffness and joint pain and reduces cartilage function and condition. Interleukin-1 beta ($IL-1{\beta}$) is thought to be important to the pathogenesis of OA and significantly increases the expression of matrix metalloproteinases (MMPs), which play an important role in cartilage degradation in OA. Sparassis crispa (Wulf.) is an edible / medicinal mushroom that has been reported to variety of biological activities. In this study, investigated the Anti-inflammatory effect of Sparassis crispa (Wulf.) ethanol extract (SCE) on $IL-1{\beta}$ stimulated SW1353 chondrocytes. SCE decreased the expression and activity of MMPs by $IL-1{\beta}$ and decreased the levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) associated with the inhibition of prostaglandin E2($PGE_2$) in $IL-1{\beta}$ stimulated SW-1353 chondrocytes. In addition, SCE inhibits the expression of MAPK (mitogen-activated protein kinase) and $NF-{\kappa}B$ (nuclear factor-kappa B) signaling in $IL-1{\beta}$ stimulated SW-1353 cells, and SCE inhibits the production of reactive oxygen species (ROS) through heme oxygenase-1 (HO-1) expression. Thus, it is suggested that SCE has a potential as an anti-inflammatory agent in osteoarthritis treatments.

Immunohistochemical localization of several protein changes in periodontal ligament during tooth eruption and interdental separation of rats (흰쥐의 치아 맹출과 치간 이개 과정에서 수종의 치주인대 단백질 발현의 변화에 관한 면역 조직화학적 연구)

  • Lim, Sung-Hoon;Park, Hyung-Soo;Yoon, Young-Jooh;Kim, Kwang-Won;Kim, Heung-Joong;Jeong, Moon-Jin;Park, Joo-Cheol
    • The korean journal of orthodontics
    • /
    • v.34 no.1 s.102
    • /
    • pp.71-81
    • /
    • 2004
  • In this study, we attempt to investigate the mechanisms by which PDL cells regulate osteoclast formation and also tc know whether PDL retained their characteristic phenotype during tooth eruption and interdental separation. Rats were prepared at developmental days 21 (pre-root formation), 27(toot development), 34(advanced root formation/eruption) and at later times(adult rats). To induce severe resorption state of alveolar bone and tooth root, interdental separation with brass wire was performed between the lower first and second molars for 2 weeks in adult rats. Rat mandibles were demineralized and embedded in paraffin, and horizontal and frontal section were prepared for immuno-histochemical analysis using PDL-specific protein 22 (PDLs22), receptor activator of NFKB ligand (RANKL) and osteoprotegerin (OPG) antibodies. 1. Root formation and eruption stage of tooth development. 1) PDLs22 immunolocalization was observed in tooth follicle/PDL cells and osteoblasts throught out the root formation and eruption stages of tooth development. 2) RANKL expression became stronger at eruption stage than root formation stage of tooth development. 3) Strong expression of OPG was detected in follice/PDL cells of toot formation stage but it was decreased with tooth eruption. 2. Interdental separation between lower first and second molar 1) Comparared to normal animal, multinucleated osteoclasts and odontoclasts were markedly induced in the alveolar bone and tooth root with PDL remodeling in hematoxylin-eosin section. 2) PDLs22 expression was decreased with interdental separation. 3) RANKL expression was Increased with interdental separation in PDL fibroblasts, osteoblasts, odontoclasts and it lacunae, resorting dentin, cementum and bone matrix. 4) OPG expression was slightly decreased in the PDL cells adjacent to the alveolar bone and root surface with interdental separation. These results suggested that during tooth eruption and tooth movement, RANKL and OPG in the periodontal tissues are important determinants regulating balanced alveolar bone and tooth root resorption. And it is also suggested that PDL cells retained their characteristic phenotype during tooth eruption and interdental separation except for the short period of PDL remodeling.