• 제목/요약/키워드: bone marrow-derived mesenchymal stem cells

Search Result 116, Processing Time 0.023 seconds

Cytotoxicity and biocompatibility of high mol% yttria containing zirconia

  • Gulsan Ara Sathi Kazi;Ryo Yamagiwa
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.52.1-52.11
    • /
    • 2020
  • Objectives: Yttria-stabilized tetragonal phase zirconia has been used as a dental restorative material for over a decade. While it is still the strongest and toughest ceramic, its translucency remains as a significant drawback. To overcome this, stabilizing the translucency zirconia to a significant cubic crystalline phase by increasing the yttria content to more than 8 mol% (8YTZP). However, the biocompatibility of a high amount of yttria is still an important topic that needs to be investigated. Materials and Methods: Commercially available 8YTZP plates were used. To enhance cell adhesion, proliferation, and differentiation, the surface of the 8YTZP is sequentially polished with a SiC-coated abrasive paper and surface coating with type I collagen. Fibroblast-like cells L929 used for cell adherence and cell proliferation analysis, and mouse bone marrow-derived mesenchymal stem cells (BMSC) used for cell differentiation analysis. Results: The results revealed that all samples, regardless of the surface treatment, are hydrophilic and showed a strong affinity for water. Even the cell culture results indicate that simple surface polishing and coating can affect cellular behavior by enhancing cell adhesion and proliferation. Both L929 cells and BMSC were nicely adhered to and proliferated in all conditions. Conclusions: The results demonstrate the biocompatibility of the cubic phase zirconia with 8 mol% yttria and suggest that yttria with a higher zirconia content are not toxic to the cells, support a strong adhesion of cells on their surfaces, and promote cell proliferation and differentiation. All these confirm its potential use in tissue engineering.

Effects of the combination of bone morphogenetic protein-2 and nano-hydroxyapatite on the osseointegration of dental implants

  • Pang, KangMi;Seo, Young-Kwon;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.47 no.6
    • /
    • pp.454-464
    • /
    • 2021
  • Objectives: This study aimed to investigate the in vitro osteoinductivity of the combination of bone morphogenetic protein-2 (BMP-2) and nanohydroxyapatite (nHAp) and the in vivo effects of implants coated with nHAp/BMP-2. Materials and Methods: To evaluate the in vitro efficacy of nHAp/BMP-2 on bone formation, bone marrow-derived mesenchymal stem cells (BM-MSCs) were seeded onto titanium disks coated with collagen (Col), Col/nHAp, or Col/nHAp/BMP-2. Protein levels were determined by a biochemical assay and reverse transcriptase-polymerase chain reaction. Stem cell differentiation was analyzed by flow cytometry. For in vivo studies with mice, Col, Col/nHAp, and Col/nHAp/BMP-2 were injected in subcutaneous pockets. Titanium implants or implants coated with Col/nHAp/BMP-2 were placed bilaterally on rabbit tibias and evaluated for 4 weeks. Results: In the in vitro study, BM-MSCs on Col/nHAp/BMP-2 showed reduced levels of CD73, CD90, and CD105 and increased levels of glycosaminoglycan, osteopontin, and alkaline phosphatase activity. After 4 weeks, the Col/nHAp/BMP-2 implant showed greater bone formation than the control (P=0.07), while no differences were observed in bone implant contact and removal torque. Conclusion: These results suggest that a combination of BMP-2 and an nHAp carrier would activate osseointegration on dental implant surfaces.

Transdifferentiation of α-1,3-Galactosyltransferase Knock Out (GalT KO) Pig Derived Bone Marrow Mesenchymal Stromal Cells (BM-MSCs) into Pancreatic Cells by Transfection of hPDX1 (hPDX1 유전자의 삽입에 의한 직접 췌도세포 분화)

  • Ock, Sun A;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Kwon, Dae-Jin;Im, Gi-Sun
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.249-255
    • /
    • 2015
  • Diabetes mellitus, the most common metabolic disorder, is divided into two types: type 1 and type 2. The essential treatment of type 1 diabetes, caused by immune-mediated destruction of ${\beta}-cells$, is transplantation of the pancreas; however, this treatment is limited by issues such as the lack of donors for islet transplantation and immune rejection. As an alternative approach, stem cell therapy has been used as a new tool. The present study revealed that bone marrowderived mesenchymal stromal cells (BM-MSCs) could be transdifferentiated into pancreatic cells by the insertion of a key gene for embryonic development of the pancreas, the pancreatic and duodenal homeobox factor 1 (PDX1). To avoid immune rejection associated with xenotransplantation and to develop a new cell-based treatment, BM-MSCs from ${\alpha}$-1,3-galactosyltransferase knockout (GalT KO) pigs were used as the source of the cells. Transfection of the EGFP-hPDX1 gene into GalT KO pig-derived BM-MSCs was performed by electroporation. Cells were evaluated for hPDX1 expression by immunofluorescence and RT-PCR. Transdifferentiation into pancreatic cells was confirmed by morphological transformation, immunofluorescence, and endogenous pPDX1 gene expression. At 3~4 weeks after transduction, cell morphology changed from spindle-like shape to round shape, similar to that observed in cuboidal epithelium expressing EGFP. Results of RT-PCR confirmed the expression of both exogenous hPDX1 and endogenous pPDX1. Therefore, GalT KO pig-derived BM-MSCs transdifferentiated into pancreatic cells by transfection of hPDX1. The present results are indicative of the therapeutic potential of PDX1-expressing GalT KO pig-derived BM-MSCs in ${\beta}-cell$ replacement. This potential needs to be explored further by using in vivo studies to confirm these findings.

17β-estradiol mediated effects on pluripotency transcription factors and differentiation capacity in mesenchymal stem cells derived porcine from newborns as steroid hormones non-functional donors

  • Lee, Won-Jae;Park, Ji-Sung;Lee, HyeonJeong;Lee, Seung-Chan;Lee, Jeong-Hyun;Ock, Sun-A;Rho, Gyu-Jin;Lee, Sung-Lim
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.209-220
    • /
    • 2017
  • The estrogen-mediated effect of mesenchymal stem cells (MSCs) is a highly critical factor for the clinical application of MSCs. However, the present study is conducted on MSCs derived from adult donors, which have different physiological status with steroid hormonal changes. Therefore, we explores the important role of $17{\beta}$-estradiol (E2) in MSCs derived from female and male newborn piglets (NF- and NM-pBMSCs), which are non-sexually matured donors with steroid hormones. The results revealed that in vitro treatment of MSCs with E2 improved cell proliferation, but the rates varied according to the gender of the newborn donors. Following in vitro treatment of newborn MSCs with E2, mRNA levels of Oct3/4 and Sox2 increased in both genders of MSCs and they may be correlated with both estrogen receptor ${\alpha}$ ($ER{\alpha}$) and $ER{\beta}$ in NF-pBMSCs, but NM-pBMSCs were only correlated with $ER{\alpha}$. Moreover, E2-treated NF-pBMSCs decreased in ${\beta}$-galactosidase activity but no influence on NM-pBMSCs. In E2-mediated differentiation capacity, E2 induced an increase in the osteogenic and chondrogenic abilities of both pBMSCs, but adipogenic ability may increased only in NF-pBMSCs. These results demonstrate that E2 could affect both genders of newborn donor-derived MSCs, but the regulatory role of E2 varies depending on gender-dependent characteristics even though the original newborn donors had not been affected by functional steroid hormones.

Interactions of Low-Temperature Atmospheric-Pressure Plasmas with Cells, Tissues, and Biomaterials for Orthopaedic Applications

  • Hamaguchi, Satoshi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.20-20
    • /
    • 2011
  • It has been known that, under certain conditions, application of low-temperature atmospheric-pressure plasmas can enhance proliferation of cells. In this study, conditions for optimal cell proliferation were examined for various cells relevant for orthopaedic applications. Plasmas used in our experiments were generated by dielectric barrier discharge (DBD) with a helium flow (of approximately 3 litter/min) into ambient air at atmospheric pressure by a 10 kV~20 kHz power supply. Such plasmas were directly applied to a medium, in which cells of interest were cultured. The cells examined in this study were human synoviocytes, rat mesenchymal stem cells derived from bone marrow or adipose tissue, a mouse osteoblastic cell line (MC3T3-E1), a mouse embryonic mesenchymal cell line (C3H-10T1/2), human osteosarcoma cells (HOS), a mouse myoblast cell line (C2C12), and rat Schwann cells. Since cell proliferation can be enhanced even if the cells are not directly exposed to plasmas but cultured in a medium that is pre-treated by plasma application, it is surmised that long-life free radicals generated in the medium by plasma application stimulate cell proliferation if their densities are appropriate. The level of free radical generation in the medium was examined by dROMs tests and correlation between cell proliferation and oxidative stress was observed. Other applications of plasma medicine in orthopaedics, such as plasma modification of artificial bones and wound healing effects by direct plasma application for mouse models, will be also discussed. The work has been done in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  • PDF

Effect of Fibroblast Growth Factor 23 on Osteoblastic Differentiation and Mineralization of D1 Mesenchymal Stem Cells (섬유모세포성장인자-23이 D1 간엽줄기세포에서 조골세포로의 분화 및 기질 광화에 미치는 영향)

  • Park, Kyeong-Lok
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.331-337
    • /
    • 2016
  • Although fibroblast growth factor 23 (FGF23) is exclusively produced in osteoblasts and osteocytes, its main target is the kidney, where it decreases phosphate reabsorption by suppressing Na-phosphate cotransporters. Independently of its action on phosphate homeostasis, FGF23 also inhibits bone formation in vivo. In a calvarial osteoblastic cell model, FGF23 was shown to negatively affect extracellular matrix mineralization. This study investigated whether FGF23 had similar effects on osteoblast maturation, including differentiation and mineralization of bone marrow-derived mesenchymal stem cells (MSCs). D1 MSCs were cultured in an osteogenic medium containing β-glycerophosphate, ascorbic acid, and dexamethazone. Osteoblastic differentiation was evaluated by alkaline phosphatase (Alp) staining, and matrix mineralization was evaluated by alizarin red staining and calcium deposition. The expression of differentiation-stimulating genes Runx2, Alp, and osteocalcin and mineralization-inhibiting genes Enpp1 and Ank was analyzed using semiquantitative RT-PCR. Supraphysiological doses of FGF23 did not stimulate proliferation or osteoblastic differentiation of MSCs. Matrix mineralization 1, 2, and 3 weeks after the FGF23 treatment did not vary between control and FGF23 groups, although time-dependent enhancement of mineralization was obvious. Calcium deposition was also unchanged after the FGF23 treatment. mRNA expression levels of differentiation- and mineralization-related genes were also similar between the groups. Despite these negative findings, FGF23 signaling through FGF receptors seemed to function normally, with phosphorylation of the Erk protein more evident in the FGF23 group than in controls. These findings suggest that unlike calvarial osteoblasts, FGF23 is not likely to affect osteoblastic differentiation and mineralization of MSCs.

NOX4 and its association with myeloperoxidase and osteopontin in regulating endochondral ossification

  • Kayoung Ko;Seohee Choi;Miri Jo;Chaeyoung Kim;Napissara Boonpraman;Jihyun Youm;Sun Shin Yi
    • Journal of Veterinary Science
    • /
    • v.25 no.4
    • /
    • pp.49.1-49.15
    • /
    • 2024
  • Importance: Endochondral ossification plays an important role in skeletal development. Recent studies have suggested a link between increased intracellular reactive oxygen species (ROS) and skeletal disorders. Moreover, previous studies have revealed that increasing the levels of myeloperoxidase (MPO) and osteopontin (OPN) while inhibiting NADPH oxidase 4 (NOX4) can enhance bone growth. This investigation provides further evidence by showing a direct link between NOX4 and MPO, OPN in bone function. Objective: This study investigates NOX4, an enzyme producing hydrogen peroxide, in endochondral ossification and bone remodeling. NOX4's role in osteoblast formation and osteogenic signaling pathways is explored. Methods: Using NOX4-deficient (NOX4-/-) and ovariectomized (OVX) mice, we identify NOX4's potential mediators in bone maturation. Results: NOX4-/- mice displayed significant differences in bone mass and structure. Compared to the normal Control and OVX groups. Hematoxylin and eosin staining showed NOX4-/- mice had the highest trabecular bone volume, while OVX had the lowest. Proteomic analysis revealed significantly elevated MPO and OPN levels in bone marrow-derived cells in NOX4-/- mice. Immunohistochemistry confirmed increased MPO, OPN, and collagen II (COLII) near the epiphyseal plate. Collagen and chondrogenesis analysis supported enhanced bone development in NOX4-/- mice. Conclusions and Relevance: Our results emphasize NOX4's significance in bone morphology, mesenchymal stem cell proteomics, immunohistochemistry, collagen levels, and chondrogenesis. NOX4 deficiency enhances bone development and endochondral ossification, potentially through increased MPO, OPN, and COLII expression. These findings suggest therapeutic implications for skeletal disorders.

Characterization of Human Thigh Adipose-derived Stem Cells (사람의 허벅지지방유래 줄기세포의 특성 분석)

  • Heo, Jin-Yeong;Yoon, Jin-Ah;Kang, Hyun-Mi;Park, Se-Ah;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.233-241
    • /
    • 2010
  • Human adipose stem cells are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue and these cells have characteristics very similar to bone marrow mesenchymal stromal cells (BMMSCs). However, liposuction procedure, donor age, body mass index, and harvesting sites might generate differences in the initial cell population and the preparations are a heterogeneous mixture of precursors with different subsets. Therefore, in this study, we investigated the characteristics of human thigh adipose stem cells and the differentiation potential into mesodermal and endodermal lineage. Thigh adipose stem cells maintained fibroblast-like morphology similar to BM-MSCs and they underwent average 56.5 doublings and produced $5{\times}10^{22}$ cells. These cells expressed SCF, Oct4, nanog, vimentin, CK18, FGF5, NCAM, Pax6, BMP4, HNF4a, nestin, GATA4, HLA-ABC, and HLA-DR genes at p3 and they also expressed Oct4, Thy-1, FSP, vWF, vimentin, desmin, CK18, CD54, CD4, CD106, CD31, a-SMA, HLA-ABC proteins. Moreover, they could differentiate into mesodermal lineage cells such as adipocyte, osteoblast and chondrocyte. In addition, they also differentiated into insulin secreting cells in our culture condition. In conclusion, human thigh adipose stem cells retain proliferative potential and expression patterns similar to BM-MSCs and they also differentiate into various cell types. Thus, human thigh adipose stem cells might be useful alternative cell source for clinical application.

Development of Scaffold for Cell Attachment and Evaluation of Tissue Regeneration Using Stem Cells Seeded Scaffold (세포부착을 위한 스캐폴드 개발 및 줄기세포를 적용한 스캐폴드의 조직재생능력 평가)

  • You, Hoon;Song, Kyung-Ho;Lim, Hyun-Chang;Lee, Jung-Seok;Yun, Jeong-Ho;Seo, Young-Kwon;Jung, Ui-Won;Lee, Yong-Keun;Oh, Nam-Sik;Choi, Seong-Ho
    • Implantology
    • /
    • v.18 no.2
    • /
    • pp.120-138
    • /
    • 2014
  • Purpose: The purpose of this study was to review the outcomes of a series of studies on tissue regeneration conducted in multiple institutions including the Department of Periodontology, College of Dentistry, Yonsei University. Materials and Methods: Studies were performed divided into the following three subjects; 1) Development of three-dimensional nano-hydroxyapatite (n-HA) scaffold for facilitating drug release and cell adhesion. 2) Synergistic effects of bone marrow-derived mesenchymal stem cells (BMMSC) application simultaneously with platelet-rich plasma (PRP) on HA scaffolds. 3) The efficacy of silk scaffolds coated with n-HA. Also, all results were analyzed by subjects. Results: Hollow hydroxyapatite spherical granules were found to be a useful tool for the drug release and avidin-biotin binding system for cell attachment. Also, BMMSC simultaneously with PRP applied in an animal bone defect model was seen to be more synergistic than in the control group. But, the efficacy of periodontal ligament cells and dental pulp cells with silk scaffolds could not be confirmed in the initial phase of bone healing. Conclusion: The ideal combination of three elements of tissue engineering-scaffolds, cells and signaling molecules could be substantiated due to further investigations with the potentials and limitations of the suggested list of studies.