• Title/Summary/Keyword: bone growth

Search Result 1,185, Processing Time 0.025 seconds

Effects of Arginine Supplementation on Bone Markers and Hormones in Growing Female Rats (성장기 암컷 쥐에서 Arginine 첨가 식이가 골 대사 지표 및 호르몬에 미치는 영향)

  • Choi, Mi-Ja
    • Journal of Nutrition and Health
    • /
    • v.40 no.4
    • /
    • pp.320-326
    • /
    • 2007
  • An important related question is whether arginine has influence bone metabolism. The effect of arginine supplements on bone markers and related hormones were studied in young female Sprague-Dawley rats fed either an arginine supplemented diet or control diet. Twenty four rats (body weight 83${\pm}$5 g) were randomly assigned to one of two groups, consuming casein or casein with supplemented arginine diet. All rats were fed on experimental diet and deionized water ad libitum for 9 weeks. Bone formation was measured by serum osteocalcin and alkaline phosphatase (ALP) concentrations. And bone resorption rate was measured by deoxypyridinoline (DPD) crosslinks immunoassay and corrected for creatinine. Serum osteocalcin, growth hormone, estrogen, insulin-like growth factor-1 (IGF-1), parathyroid hormone (PTH) and calcitonin were analyzed using radioimmunoassay kits. The weight gain and mean food intake were not affected regardless of diets. The rats fed arginine-supplemented diet had not significantly different in ALP, osteocalcin, crosslinks value, PTH, estradiol, and IGF-1 compared to those fed casein diet group. The arginine-supplemented group had significantly higher growth hormone and calcitonin than casein group. This study suggests that arginine is beneficial for bone formation in growing female rats. Therefore exposure to diet which rich in arginine early in life may have benefits for bone formation and osteoporosis prevention.

Diagnosis and Management of Chronic Kidney Disease-Mineral Bone Disease in Children

  • Suh, Jin-Soon
    • Childhood Kidney Diseases
    • /
    • v.24 no.1
    • /
    • pp.14-18
    • /
    • 2020
  • Chronic kidney disease-mineral bone disorder (CKD-MBD) is a systemic disorder of mineral and bone metabolism caused by CKD. Patients with early-stage CKD who present with disordered regulation of bone and mineral metabolism may be asymptomatic. However, if untreated, the condition can be a significant barrier in achieving optimal bone strength, linear growth, and cardiovascular health in pediatric patients with CKD. Thus, the current study evaluated the definition, pathogenesis, diagnosis, and management of pediatric CKD-MBD.

A Study on the Longitudinal Bone Growth of Growth-stimulating Material with Eleutherococcus senticosus (가시오가피가 함유된 성장촉진용 조성물의 골성장효과 연구)

  • Yang, Dong-Sik;Cha, Min-Ho;Kang, Bong-Joo;Oh, Se-Wook;Kim, Young-Eon;Yoon, Yoo-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.702-707
    • /
    • 2003
  • This study was conducted to evaluate the effect of a growth-stimulating material (GSM) containing Eleutherococcus senticosuson on the longitudinal bone growth. The effects of GSM on proliferation zone and IGF-1 mRNA expression in rat growth plate, IGF-1 mRNA expression in MG-63 osteoblast and Hep-G2 hepatocyte, and bone growth of mouse tibia were studied. GSM significantly increased the proliferation zone in growth plate of proximal tibia (P<0.001) and the IGF-1 mRNA expression in growth plate was also increased (P<0.01). Treatment of GSM to MG-63 osteoblast and Hep-G2 hepatocyte also increased IGF-1 mRNA expression more than twice. In addition, bone mineral density of mouse tibia was significantly increased by GSM (P<0.05). Therefore, it was shown that GSM has an activity of bone growth promotion by increasing the expression of IGF-1, a major bone growth factor.

A Case Report of Guided Bone Regeneration Using a Putty-type Demineralized Bone Matrix (골유도재생술에 대한 putty형 탈회 기질골 이용연구)

  • Jeong, Mi-Ae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.330-333
    • /
    • 2011
  • Allomatrix (Wright Medical Tech, Inc., USA), is a newly designed, injectable putty with a reliable demineralized bone matrix(DBM), derived from human bone. The compound contains 86% DBM and other bone growth factors such as bone morphogenic protein (BMP)-2, BMP-4, insulin-like growth factor (IGF)-1, and transforming growth factor (TGF)-${\beta}1$. It has excellent os-teoinduction abilities. In addition, DBM is known to have osteoconduction capacity as a scaffold due to its collagen matrix. This product contains a powder, which is a mix of DBM and surgical grade calcium sulfate as a carrier. A practitioner can blend the powder with calcium sulfate solution, making a putty-type material which has the advantages of ease of handling, better fixation, and no need for a membrane, because it can function as membrane itself. This study reports the clinical and radiographic results of various guided bone regeneration cases using Allomatrix, demonstrating its strong potential as a graft material.

  • PDF

MOLECULAR BIOLOGY IN DENTAL IMPLANT (치과 임플란트에서의 분자생물학적 연구)

  • Jee, Yu-Jin;Ryu, Dong-Mok;Lee, Deok-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.6
    • /
    • pp.616-621
    • /
    • 2008
  • Osseointegration is a result of bone formation and bone regeneration processes, which takes place at the interface between bone and implant, and it indicates a rigid fixation that can be stably maintained while functional loading is applied inside the oral cavity as well as after implant placement. Although many researches were carried out about osseointegration mechanism, but cellular and molecular events have not been clarified. With recent development of molecular biology, some researches have examined biological determinants, such as cytokine, growth factors, bone matrix proteins, during osseointegration between bone and implant surface, other researches attempted to study the ways to increase bone formation by adhering protein to implant surface or by inserting growth factors during implant placement. Cellular research on the reaction of osteoblast especially to surface morphology (e.g. increased roughness) has been carried out and found that the surface roughness of titanium implant affects the growth of osteoblast, cytokine formation and mineralization. While molecular biological research in dental implant is burgeoning. Yet, its results are insignificant. We have been studying the roles of growth factors during osseointegration, comparing different manifestations of growth factors by studying the effect of osseointegration that varied by implant surface. Of many growth factors, $TGF-{\beta}$, IGF-I, BMP2, and BMP4, which plays a significant role in bone formation, were selected, and examined if these growth factors are manifested during osseointegration. The purpose of this article is to present result of our researches and encourage molecular researches in dental implant.

Histologic Study on the Effect of Two Types of Bovine Bone Powder in Extraction Socket of Beagle Dogs (성견 발치와에 매식한 2종의 Bovine Bone Powder가 치유에 미치는 영향에 관한 조직학적 연구)

  • Park, Tae-Seong;Lim, Sung-Bin;Chung, Chin-Hyung;Kim, Jong-Yeo
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.3
    • /
    • pp.527-538
    • /
    • 2000
  • Several extraction cases with advanced bone loss as a result of periodontal disease, root or labial bone fracture, extensive caries, and periapical lesions occur esthetic, functional problems and severe bone loss. Therefore, to treat these cases used several surgical methods and socket preservation among this therapies have been evaluated simple, effective and good prognosis in the implant placement. Socket preservation therapy have been used with barrier membranes or/and graft materials. Deproteinized bovine bone mineral have been evaluated ideal grafting materials. Recently, calcium-phosphate thin film coated bovine bone powders were developed in our country, but the study for these material wasn't reported. When two types of xenograft materials were implanted in extraction sockets of Beagle dogs, the effects of these were analyzed after 4 weeks and 8 weeks histological views. The results of this study were as follows. 1. In control groups, 4 weeks after implantation, the extraction sockets were filled with connective tissue which has dilated vessels and epithelial growth. And after 8 weeks, irregular connective bundles were observed. But new bone formation was not seen. 2. In Bio-Oss groups, epithelial growth was not seen and bone powder was covered with connective tissue fiber. New bone formation was found around the interproximal bone. There was no special change seen after 8 weeks, connective tissue fibers became more regular, and bone growth near bone powder was not made well. 3. In Ca-P BBP groups, epithelial cells didn't grow in the extraction sockets, there was a lot of new bone made around the bone powder after 8 weeks, new bone around bone powder was replaced with mature bone. It is thought that bone powder grafting into the extraction sockets is very useful for conservation of ridge, and Ca-P BBP is more effective in bone formation than Bio-Oss.

  • PDF

THE EFFECT OF HEPATOCYTE GROWTH FACTOR FOR REPAIR OF THE BONE DEFECT (간세포성장인자가 골결손부의 치유에 미치는 영향)

  • Shin, Sang-Hun;Kim, Chang-Ju;Kim, Cheol-Hun;Kim, Yong-Deok;Chung, In-Kyo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.5
    • /
    • pp.380-390
    • /
    • 2004
  • Bone healing plays an important role in orthognathic and craniofacial surgery. Bone tissue repair and regeneration are regulated by an array of growth and morphogenetic factors. Bone formation and remodeling require continuous generation of osteoprogenitor cells from bone marrow stromal cells, which generate and respond to a variety of growth factors with putative roles in hematopoiesis and mesenchymal differentiation. In this study, the efficacy of a single application of hepatocyte growth factor to promote bone regeneration in 5-mm experimental calvarial defects of adult male rats was assessed histologically and immunohistochemically. The result of the experimental site were compared with those of the contralateral contral side. None of the control and experimental bone defects demonstrated complete bone closure. Bone regeneration was found close th the margine and central part of the defects. At 1, 2 weeks, there were found much significant cellural mitotic activity and many inflammatory cells and osteoblasts on the experimental site than control site. At 4, 6 weeks, new bone apposition was founded in both site but, more apposition was seen at experimental site. At 8, 12 weeks, also, some differences was found that more apposition of new bone and collagen fiber was seen on experimental site. Our results have some possibility that HGF do a early positive role to repair the bone defect. More study will be needed.

Effects of Soy Protein and Isoflavones on Bone Markers and Hormones in Growing Male Rats (콩 단백질과 Isoflavones가 성장기 수컷 흰쥐에서 골 지표와 호르몬에 미치는 영향)

  • 최미자
    • Journal of Nutrition and Health
    • /
    • v.36 no.5
    • /
    • pp.452-458
    • /
    • 2003
  • Soybean is a rich source of isoflavones such as genistein and daidzein. Soy isoflavones have both weak estrogenic and anti-estrogenic effects and are structurally similar to tamoxifen, an agent that has an effect similar to that of estrogen in terms of reducing postmenopausal bone loss. The purpose of this study was to determine the effects of differences in protein source (casein vs soy) and isoflavone levels (reduced vs higher levels) on selected bone markers and hormones in growing male rats. Thirty weanling Sprague-Dawley young rats were divided into 3 groups: The control group was fed a casein-based diet, the soy concentrate group was fed soy protein with totally reduced isoflavones content (isoflavones 0.07 mg/g protein), and the soy isolate group was fed soy protein with a higher than normal isoflavones content (isoflavones 3.4 mg/g protein). The degree of bone formation was estimated by measuring serum osteocalcin and alkaline phosphoatase (ALP). By determining collagen cross-linkage by immunoassay and correcting with creatinine values, the bone resorption rate was compared. Serum osteocalcin, growth hormone, estrogen and calcitonin were analyzed using radio immunoassay kits. The bone formation marker and ALP activity were differentiated by protein source, showing higher values than casein in feeding either soy isolate or soy concentrate. In this study using growing rats, the differences in isoflavone contents were not a significant factor in either bone formation or bone reaborption markers. Moreover, the soy isolate group had significantly higher levels of growth hormone than the casein group. The findings of this study suggest that growth hormone is partially responsible for its bone-formation effects in young growing rats. Soy protein and the isoflavones in soy protein are beneficial for bone-formation in growing male rats. Therefore, exposure to soy protein and isoflavones early in life may have long-term health benefits in preventing bone diseases such as osteoporosis. Further study to evaluate the mechanism of action of isoflavones on bones is warranted. (Korean J Nutrition 36(5): 452∼458, 2003)

Promotion of Bone Nodule Formation and Inhibition of Growth and Invasion of Streptococcus mutans by Weissella kimchii PL9001

  • Lee Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.531-537
    • /
    • 2006
  • Lactic acid-producing bacteria (LABs) are known to have various beneficial properties for health. However, they are generally considered to have an adverse effect on teeth, since they produce acid. Nonetheless, milk and cheese containing specific LAB strains were recently found to have an inhibitory effect on dental caries in children, with an inhibitory activity towards the growth of Streptococcus mutans suggested as the responsible mechanism. Accordingly, the current study selected a probiotic candidate for oral health and studied its inhibitory mechanism against dental caries. Twenty-two LAB species belonging to eleven genuses were screened for promoting bone nodule formation using direct microscopic examination. Only one isolate, Weissella kimchii strain PL9001, increased the bone nodule formation significantly. The addition of W. kimchii strain PL9001 to bone cells prepared from mouse calvaria increased the bone nodule formation, calcium accumulation, and activity of alkaline phosphatase (the osteoblastic marker). Moreover, W. kimchii strain PL9001 inhibited the invasion of Streptococcus mutans into bone cells, and an organic extract of the culture supernatant of W. kimchii strain PL9001 inhibited the growth of Strep. mutans. Therefore, the results suggest that W. kimchii strain PL9001 can be used as a preventive measure against dental caries. This is the first time that a LAB has been shown to promote bone nodule formation and prevent the invasion of Strep. mutans into bone cells.

The effect of fibroblast growth factor receptor inhibition on resistance exercise training-induced adaptation of bone and muscle quality in mice

  • Cho, Suhan;Lee, Hojun;Lee, Ho-Young;Kim, Sung Joon;Song, Wook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.207-218
    • /
    • 2022
  • Aging in mammals, including humans, is accompanied by loss of bone and muscular function and mass, characterized by osteoporosis and sarcopenia. Although resistance exercise training (RET) is considered an effective intervention, its effect is blunted in some elderly individuals. Fibroblast growth factor (FGF) and its receptor, FGFR, can modulate bone and muscle quality during aging and physical performance. To elucidate this possibility, the FGFR inhibitor NVP-BGJ398 was administrated to C57BL/6n mice for 8 weeks with or without RET. Treatment with NVPBGJ398 decreased grip strength, muscular endurance, running capacity and bone quality in the mice. FGFR inhibition elevated bone resorption and relevant gene expression, indicating altered bone formation and resorption. RET attenuated tibial bone resorption, accompanied by changes in the expression of relevant genes. However, RET did not overcome the detrimental effect of NVP-BGJ398 on muscular function. Taken together, these findings provide evidence that FGFR signaling may have a potential role in the maintenance of physical performance and quality of bone and muscles.