• Title/Summary/Keyword: bone graft substitute

Search Result 72, Processing Time 0.023 seconds

Efficacy of Calcium Sulfate Pellets as Bone Graft Substitute in Lumbar Posterolateral Fusion - Preliminary Report - (요추부 후측방 유합술에서 골편대체물로서 황산칼슘의 효과에 대한 연구)

  • Lee, Seung Ku;Kim, Choong Hyun;Cheong, Jin Hwan;Bak, Koang Hum;Kim, Jae Min;Oh, Suck Jun
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.5
    • /
    • pp.605-610
    • /
    • 2001
  • Objective : The authors investigated the efficacy of the calcium sulfate(OsteoSet$^{(R)}$ pellets) as an autograft extender when used to perform posterolateral lumbar fusions. Patients and Methods : Twenty patients who underwent lumbar posterolateral arthrodesis for various spinal diseases between October 1999 and March 2000 were evaluated. Arthrodesis was performed by transpedicular screw fixation and bone grafting with a mixture of autograft + calcium sulfate in a 1 : 1 ratio. At time intervals of 1, 2, 3, and 6 months, postoperative radiographs were obtained to review the resorption of calcium sulfate and the evidence of fusion. A modified Lenke scale was used to assess the status of the fusion. Results : At 2 months after operation, the average modified Lenke scale score for the OsteoSet$^{(R)}$ pellets group was 3.8. However at 6 months after operation, the average modified Lenke scale score for the OsteoSet$^{(R)}$ pellets group was 1.8. Resorption of calcium sulfate pellets was revealed in all cases at 6 months after surgery. Conclusion : It is presumed that a combination of calcium sulfate and autograft can play a role as an effective autograft extender in the posterolateral spinal fusion.

  • PDF

Fabrication of Porous β-TCP Bone Graft Substitutes Using PMMA Powder and their Biocompatibility Study (PMMA를 이용한 다공질 β-TCP 골충진제 제조 및 생체적합성 평가)

  • Song, Ho-Yeon;Youn, Min-Ho;Kim, Young-Hee;Min, Young-Ki;Yang, Hun-Mo;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.318-322
    • /
    • 2007
  • Porous ${\beta}-tricalcium$ phosphate $({\beta}-TCP)$ bioceramic was fabricated by pressureless sintering using commercial HAp and different volume percentages of PMMA powders (30-60 vol.%). The range of spherical pore size was about $200-250\;{\mu}m$ in diameter. By increasing the PMMA content, the number of pores and their morphology were dramatically changed as well as decreased the material properties. In case of using 60 vol.% PMMA content, network-type pores were found, due to the necking of the PMMA powders. The values of relative density, elastic modulus, bending strength and hardness of the 60 vol.% PMMA content sample, sintered at $1500^{\circ}C$, were about 46%, 22.2 GPa, 5MPa and 182 Hv respectively. Human osteoblast-like MG-63 cells and osteoclast-like Raw 264.7 cells were well grown and fully covered all of the porous ${\beta}-TCP$ bodies sintered at $1500^{\circ}C$.

Fabrication of Blended PCL/β-TCP Scaffolds by Mixture Ratio of β-TCP using Polymer Deposition System (폴리머 적층 시스템을 이용한 β-TCP 혼합 비율에 따른 PCL/β-TCP 인공지지체의 제작)

  • Ha, Seong-Woo;Kim, Jong Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.791-797
    • /
    • 2014
  • Abstract Scaffold used as a carrier of the cell has been actively conducted using plenty of technology in tissue engineering. ${\beta}$-tricalcium phosphate (${\beta}$-TCP) material has shown good biocompatibility and osteoconductive ability when it was implanted as a bone graft substitute in osseous defect in human and animal studies for bone regeneration. In this study, we fabricated the blended polycaprolactone (PCL) and ${\beta}$-TCP scaffold by the polymer deposition system (PDS). The PCL/${\beta}$-TCP scaffold was fabricated at a temperature of $110^{\circ}C$, pressure of 650 kPa, and scan velocity of 100 mm/sec. The Overall geometry and size of the scaffold were fixed circle type with a diameter of 10 mm and a height of 4 mm. PCL/${\beta}$-TCP scaffold was observed by scanning electron microscopy. Cell attachment and proliferation of the scaffold containing 30 wt% ${\beta}$-TCP was superior to those containing 10 wt% and 20 wt% ${\beta}$-TCP.

SINUS FLOOR GRAFTING USING CALCIUM PHOSPHATE NANO-CRYSTAL COATED XENOGENIC BONE AND AUTOLOGOUS BONE (칼슘포스페이트 나노-크리스탈이 코팅된 골이식재와 자가골을 병행 이용한 상악동 거상술)

  • Pang, Kang-Mi;Li, Bo-Han;Alrashidan, Mohamed;Yoo, Sang-Bae;Sung, Mi-Ae;Kim, Soung-Min;Jahng, Jeong-Won;Kim, Myung-Jin;Ko, Jea-Seung;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.243-248
    • /
    • 2009
  • Purpose: Rehabilitation of the edentulous posterior maxilla with dental implants often poses difficulty because of insufficient bone volume caused by pneumatization of the maxillary sinus and by crestal bone resorption. Sinus grafting technique was developed to increase the vertical height to overcome this problem. The present study was designed to evaluate the sinus floor augmentation with anorganic bovine bone (Bio-$cera^{TM}$) using histomorphometric and clinical measures. Patients and methods: Thirteen patients were involved in this study and underwent total 14 sinus lift procedures. Residual bone height was ${\geq}2mm$ and ${\leq}6mm$. Lateral window approach was used, with grafting using Bio-$cera^{TM}$ only(n=1) or mixed with autogenous bone from ramus and/or maxillary tuberosity(n=13). After 6 months of healing, implant sites were created with 3mm diameter trephine and biopsies taken for histomorphometric analysis. The parameters assessed were area fraction of new bone, graft material and connective tissue. Immediate and 6 months after grafting surgery, and 6 months after implantation, computed tomography (CT) was taken and the sinus graft was evaluated morphometric analysis. After implant installation at the grafted area, the clinical outcome was checked. Results: Histomorphometry was done in ten patients.Bio-$cera^{TM}$ particles were surrounded by newly formed bone. The graft particles and newly formed bone were surrounded by connective tissue including small capillaries in some fields. Imaging processing revealed $24.86{\pm}7.59%$ of new bone, $38.20{\pm}13.19%$ connective tissue, and $36.92{\pm}14.51%$ of remaining Bio-$cera^{TM}$ particles. All grafted sites received an implant, and in all cases sufficient bone height was achieved to install implants. The increase in ridge height was about $15.9{\pm}1.8mm$ immediately after operation (from 13mm to 19mm). After 6 months operation, ridge height was reduced about $11.5{\pm}13.5%$. After implant installation, average marginal bone loss after 6 months was $0.3{\pm}0.15mm$. Conclusion: Bio-$cera^{TM}$ showed new bone formation similar with Bio-$Oss^{(R)}$ histomorphometrically and appeared to be an effective bone substitute in maxillary sinus augmentation procedure with the residual bone height from 2 to 6mm.

Degradation rate of several types of Calcium Polyphosphate;Long term results (다양한 형태의 다공질 Calcium Polyphosphate의 생분해성에 관한 장기적인 연구)

  • Yang, S.M.;Seol, Y.J.;Kye, S.B.;Lee, I.K.;Lee, C.W.;Kim, S.Y.;Lee, Yong-Mu;Ku, Y.;Han, S.B.;Chung, C.P.;Choi, S.M.;Rhyu, I.C.
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.2
    • /
    • pp.301-310
    • /
    • 2003
  • The purpose of this study is to evaluate the biocompatibility and the biorsorbability of several types of calcium polyphosphate made through change of manufacturing process for 12 month. To solve limitation of calcium phosphate, we developed a new ceramic, Calcium Polyphosphate(CPP), and report the biologic response to CPP in extraction sites of beagle dog. Porous CPP blocks were prepared by condensation of anhydrous $Ca(H_2PO_4)_2$ to form non-crystalline $Ca(PO_3)_2$ and then milled to produce CPP powder. CPP powder, CPP block, and CPP granules added with $Na_2O$ were implanted in extraction sockets and histologic observation were performed at 12 months later. Like 3 months results, histologic observation at 12 months revealed that CPP matrix were mingled with and directly apposed to new bone without any adverse tissue reaction, CPP powder show direct bony contact, but new bone formation and fibrous tissue encapsulation showed in CPP block. 10% $Na_2O$ CPP granules show more inflammatory cells infiltration around graft materials compared at 3 month, but 15% $Na_2O$ CPP granules show less. This result revealed that regardless of addition of $Na_2O$, CPP had a high affinity for bone and had been resorbed slowly. From this results, it was suggested that CPP is promising ceramic as a bone substitute and addition of $Na_2O$ help biodegradation but optimal concentration of $Na_2O$ and other additive component to increase degradation rate should be determined in further study.

Effect of Strontium Doped Porous BCP as Bone Graft Substitutes on Osteoblast (스트론튬(Strontium)이 도핑된 다공성 BCP 뼈 이식제가 조골세포에 미치는 영향)

  • Byun, In-Seon;Sarkar, Swapan Kumar;Seo, Hyung-Seok;Lee, Byong-Taek;Song, Ho-Yeon
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.155-160
    • /
    • 2010
  • In this study, we investigated primary biocompatibility and osteogenic gene expression of porous granular BCP bone substitutes with or without strontium (Sr) doping. In vitro biocompatibility was investigated on fibroblasts like L929 cells and osteoblasts like MG-63 cells using a cell viability assay (MTT) and one cell morphological observation by SEM, respectively. MTT results showed a cell viability percent of L929 fibroblasts, which was higher in Sr-BCP granules (98-101%) than in the non-doped granules (92-96%, p < 0.05). Osteoblasts like MG-63 cells were also found to proliferate better on Sr-doped BCP granules (01-111%) than on the non-doped ones (92-99%, p < 0.05) using an MTT assay. As compared with pure BCP granules, SEM images of MG-63 cells grown on sample surfaces confirmed that cellular spreading, adhesion and proliferation were facilitated by Sr doping on BCP. Active filopodial growth of MG-63 cells was also observed on Sr-doped BCP granules. The cells on Sr-doped BCP granules were well attached and spread out. Gene expression of osteonectin, osteopontin and osteoprotegrin were also evaluated using reverse transcriptase polymerase chain reaction (RT-PCR), which showed that the mRNA phenotypes of these genes were well maintained and expressed in Sr-doped BCP granules. These results suggest that Sr doping in a porous BCP granule can potentially enhance the biocompatibility and bone ingrowth capability of BCP biomaterials.

The Effects of calcium sulfate on healing of 1-wall intrabony defects in dogs (성견의 1면 골내낭에 calcium sulfate 이식이 치주조직 치유에 미치는 영향)

  • Suh, Hye-Yuhn;Choi, Seong-Ho;Moon, Ik-Sang;Cho, Kyoo-Sung;Kim, Chong-Kwan;Chai, Jung-Kiu
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.2
    • /
    • pp.363-377
    • /
    • 1997
  • The main goal of periodontal therapy is the regeneration of periodontal tissue which has been lost due to destructive periodontal diseases. Although conventional forms of periodontal therapy show sound clinical results, the healing results in long junctional epithelium. There have been numerous materials and surgical techniques developed for new attachment and bone regeneration. Bone grafts can be catagorized into: autografts, allografts, xenografts and bone substitutes. Synthetic bone substitute materials include hydroxyapatite, tricalcium phosphate, calcium carbonate, and Plaster of Paris. Calcium sulfate has found its use in dental practice for the last 30 years. Recent animal studies suggest that periodontal regeneration in 3 wall intrabony defect may be enhanced by the presence of calcium sulfate. And it is well known that 2 wall & 1 wall defect have less osteogenic potential, So we need to study the effect of calcium sulfate in 1 wall intrabony defect in dogs. The present study evaluates the effects of calcium sulfate on the epithelial migration, alveolar bone regeneration and cementum formation in intrabony defects of dogs. Four millimeter-deep one-wall intrabony defects were surgically created in the mesial aspect of anterior teeth and mesial & distal aspects of premolars. The test group received calcium sulfate grafts with a flap procedure. The control underwent flap procedure only. Histologic analysis following 8 weeks of healing revealed the following results: 1. The lengths of junctional epithelium were: 2.52mm in the control, and 1.89mm in the test group. There was no statistical significance between the two groups. 2. Alveolar bone formation were: 0.61mm in the control, and 1.88mm in the test group. There was a statistically significant difference between the two groups (p<0.05). 3. Cementum formations were: l.lmm in the control, and 2.46mm in the test group. There was a statistically significant difference between the two groups (p<0.05). 4. The length of CT adhesion were: O.97mm in the control, and 0.17mm in the test group. There was no statistically significant differences between the two groups These results suggest that the use of calcium sulfate in intrabony defects has little effect on junctional epithelium migration, but has significant effects on new bone and new cementum formations.

  • PDF

Effect of platelet-rich plasma on bone regeneration in ovariectomized osteoporotic rats (골다공증 유발 쥐에서 혈소판 농축 혈장이 골 재생에 미치는 영향)

  • Cho, Jong-Moon;Kang, Jeong-Kyung;Suh, Kyu-Won;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.1
    • /
    • pp.16-27
    • /
    • 2010
  • Purpose: The aim of this experimental study is to observe the effect of platelet-rich plasma (PRP) on early bone regeneration of rats both in normal condition and in osteoporosis induced by ovariectomy. Material and methods: Total 40 Sprague-Dawley female rats were divided into 4 groups. A 8-mm-diameter calvarial critical-sized defect (CSD) was made by drilling with trephine at the center of calvaria in cranium of every rat. Every CSD was augmented with an osteoconductive synthetic alloplastic substitute ($MBCP^{TM}$) and PRP as follows. Group A; 10 non-ovariectomized rats grafted with only $MBCP^{TM}$. Group B; 10 non-ovariectomized rats grafted with $MBCP^{TM}$ and PRP. Group C; 10 ovariectomized rats grafted with only $MBCP^{TM}$. Group D; 10 ovariectomized rats grafted with $MBCP^{TM}$ and PRP. At 4 weeks after graft, every rat was sacrificed. And histomorphometric analysis was performed by measuring calcified area of new bone formation within the CSD. Results: Comparing four groups, results were obtained as follows. 1. In non-ovariectomized groups, PRP showed a positive effect somewhat but not significant (P > .05). 2. In ovariectomized groups, PRP showed a positive effect significantly (P < .05). 3. In PRP untreated groups, ovariectomy diminished bone regeneration significantly (P < .05). 4. In PRP treated groups, ovariectomy diminished bone regeneration somewhat but not significant (P > .05). Conclusion: Within the limitation of this study, it can be concluded that PRP in combination with an osteoconductive synthetic alloplastic substitute has an effect on bone regeneration more significantly in ovariectomized osteoporotic rats than in normal rats.

The Operative Treatment using Porous Hydroxyapatite for Intraarticular Calcaneal Fractures of Joint Depression Type (관절함몰형 종골 골절에 대한 다공성 하이드록시 아파타이트를 이용한 수술적 치료)

  • Choi, Eui-Sung;Kim, Yong-Min;Kim, Dong-Soo;Shon, Hyun-Chul;Park, Kyoung-Jin;Cho, Byung-Ki;Park, Ji-Kang;Yoo, Jun-Il
    • Journal of Korean Foot and Ankle Society
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • Purpose: This study was performed to evaluate the clinical outcomes of operative treatment using porous hydroxyapatite for intraarticular calcaneal fracture of joint depression type. Materials and Methods: Twenty patients with intraarticular calcaneal fracture were followed up for more than 1 year. The period to union was calculated to evaluate the osteoconductivity of porous hydroxyapatite used as bone graft substitute. The measurement of Bohler angle, Gissane angle and the degree of articular surface depression was performed through preoperative and postoperative radiographs. The clinical evaluation was performed according to hindfoot score of the American Orthopaedic Foot and Ankle Society (AOFAS) and scale of the Creighton-Nebraska health foundation (CNHF). Results: Bohler angle and Gissane angle had improved significantly from preoperative average $10.4^{\circ}$, $117.8^{\circ}$ to average $22.6^{\circ}$, $113.5^{\circ}$ immediate postoperatively, and had maintained to average $21.2^{\circ}$ and $114.4^{\circ}$ at the last follow-up. The degree of articular surface depression had improved significantly from preoperative average 4.8 mm to 1.5 mm at the last follow-up. All cases achieved bone union, and the interval to union was average 12.8 weeks. AOFAS score was average 85.2 points at last follow-up. There were 7 excellent, 10 good, and 3 fair results according to the CNHF scale. Therefore, 17 cases (85%) achieved satisfactory results. Conclusion: Plate fixation using porous hydroxyapatite seems to be one of effective treatment methods for intraarticular calcaneal fracture of joint depression type, because of supporting the reduction of subtalar articulation by augmenting bony defect and facilitating bone formation. Further evaluation about long-term radiological changes and histological analysis on hydroxyapatite implantation site should be required.

Study of chitosan's effects on periodontal tissue regeneration: a meta-analysis of the histomorphometry (키토산의 치주조직 재생력에 대한 연구의 고찰: 조직계측학적 메타분석)

  • Yang, Jin-Hyuk;Chae, Gyung-Joon;Yun, Jeong-Ho;Jung, Ui-Won;Lee, Yong-Keun;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • Purpose: Chitosan & chitosan derivative(eg. membrane) have been studied in periodontal regeneration, and recently many studies of chitosan have reported good results. If chitosan's effects on periodontal regeneration are enhanced, we can use chitosan in many clinical and experimental fields. For this purpose, this study reviewed available literatures, evaluated comparable experimental models. Materials and Methods: Ten in vivo studies reporting chitosan's effects on periodontal tissue regeneration have been selected by use of the 'Pubmed' and hand searching. Results: 1. In Sprague Dawley rat calvarial defect models, amount of newly formed bone in defects showed significant differences between chitosan/chitosan-carrier/chitosan-membrane groups and control groups. 2. In beagle canine 1-wall intrabony defect models, amount of new cementum and new bone showed significant differences between chitosan/chitosan-membrane groups and control groups. The mean values of the above experimental groups were greater than the control groups. Conclusion: The results of this study have demonstrated that periodontal regeneration procedure using chitosan have beneficial effects, which will be substitute for various periodontal regenerative treatment area. One step forward in manufacturing process of chitosan membrane and in use in combination with other effective materials(eg. bone graft material or carrier) may bring us many chances of common use of chitosan in various periodontal area.