• Title/Summary/Keyword: bonding temperature

Search Result 1,063, Processing Time 0.028 seconds

Investigation of the Effect of Organoclay Additives on Mechanical Properties of PF resin and MPB-OSL using Creep Behavior Analysis and IB Test

  • Kim, Yong-Sik;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.381-389
    • /
    • 2011
  • The effect of organoclays on the mechanical properties of cured phenol formaldehyde resin and oriented strand lumber made from Mountain Pine Beetle killed pine strands was analyzed. Three organoclays were used: a natural montmorillonite, hydrophobic organically modified 10 A, and hydrophilic organically modified 30 B. The oriented strand lumber samples were less creep deformation as well as improved internal bonding strength by adding organoclays in the order of 10 A 2% > MMT 2% > 30 B 2% > control. Furthermore, time-temperature superposition (TTS) analysis was proved to be able to predict the long-term creep behavior of MPB-OSL samples.

Fabrication and AE Characteristics of TiNi/ A16061 Shape Memory Alloy Composite

  • Park, Young-Chul;Lee, Jin-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.453-459
    • /
    • 2004
  • TiNi/ Al6061 shape memory alloy (SMA) composite was fabricated by hot press method to investigate the microstructure and mechanical properties. Interface bonding between TiNi reinforcement and A1 matrix was observed by using SEM and EDS. Pre-strain was imposed to generate compressive residual stress inside composite. A tensile test for specimen, which under-went pre-strain, was performed at high temperature to evaluate the variation of strength and the effect of pre-strain. It was shown that interfacial reactions occurred at the bonding between matrix and fiber, creating two inter-metallic layers. And yield stress increased with the amount of pre-strain. Acoustic Emission technique was also used to nondestructively clarify the microscopic damage behavior at high temperature and the effect of pre-strain of TiNi/ Al6061 SMA composite.

Modeling of Soldering Proess using Longitudinal Thermosonic Method (종방향 열초음파 방법을 이용한 솔더링 공정의 모델링)

  • 김정호;이지혜;유중돈;최두선
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.224-227
    • /
    • 2003
  • The longitudinal thermosonic bonding method is investigated in this work for its application to the soldering process for electronic packaging. The effect of the ultrasonic is analyzed through lumped modeling, and the material properties of a viscoelastic model are measured experimentally. The thermosonic bonding method is verified by inserting the Cu pin and Au bump into solder block. As the solder thickness decreases, temperature of the solder is calculated to increase rapidly because of larger strain. Localized heating due to ultrasonic vibration is observed to melt the solder near the pin, which is adequate to the high density electronic package and Pb-free solder having high melting temperature.

  • PDF

Sintering of Silicon Carbide by Reaction Bonding and its Characteristics (Effect of Addition of B4C and Y2O3 in Initial Sintering Precess) (반응소결에 의한 SiC의 소결과 그 특성에 관한 연구 (초기 소결과정에서의 B4C 및 Y2O3의 첨가 영향))

  • 백용혁
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.6
    • /
    • pp.609-614
    • /
    • 1988
  • This study was carried out to investigate the effects of B4C or Y2O3 additives on the tendency of sintering, $\beta$-SiC synthesis and mineral phase changes by reaction bonding of SiC at 145$0^{\circ}C$. At the sintering temperature of 145$0^{\circ}C$, the additives such as B4C or Y2O3 did not improved porosity and bending strength. Added more than 1.5% of Y2O3, 0.5-0.3% of B4C, the formation of $\beta$-SiC was increased. At higher temperature above 145$0^{\circ}C$, it seems that the bodies added B4C, contained 3C form of SiC were denser than that of Y2O3 added. Because the transition of 3Clongrightarrow4Hlongrightarrow6H promoted sintering.

  • PDF

Development of Ceramic Arc-tube by the PIM Process

  • Rhee, Byung-Ohk;Choi, Seung-Chul;Park, Jeong-Shik;Kim, Byoung-Kyu;Kim, Hyung-Soo;Kim, Sang-Woo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.205-206
    • /
    • 2006
  • A ball-shape alumina arc-tube for low-wattage lamp was developed by the PIM process. An ultra high purity translucentgrade alumina powder was used. In injection molding process, a hot-runner type mold was developed. The translucent-grade alumina powder was extremely sensitive to contamination so that the injection molding condition and atmosphere control in the furnace should be taken care of with extreme caution. Contamination sources were pinpointed with EPMA. The arc-tube was molded in half and two halves were bonded in the middle by a new bonding technique at room temperature developed in this study.

  • PDF

Photophysical properties of Khellin

  • Shim, Sang-Chul;Kang, Ho-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.341-344
    • /
    • 1987
  • The fluorescence quantum yield of khellin is sensitive to temperature and to the nature of solvents, especially the proton-donating ability in solute-to-solvent hydrogen bonding. The intersystem crossing quantum yields are 0.4 and 0.15 in acetonitrile and ethanol, respectively. The fluorescence quantum yields in ethanol and isopentane at 77 K are 0.61 and 0.07, respectively, both of which are much larger than the values at room temperature. The phosphorescence lifetime is relatively long and decreases with decreasing solvent polarity. The phosphorescence to fluorescence quantum yield ratio is very small and remains unchanged in various solvents. The results suggest that internal conversion is an important decay channel of the excited singlet state of khellin, especially in the hydrogen-bonding hydroxyl solvents.

A Stud on the Abrasive Wheels Bonded with Soda-borosilicate Glass (Soda-borosilicate Glass를 결합재로 한 연삭 숫돌에 관한 연구)

  • 이희수;박정현;권오현
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.3
    • /
    • pp.178-183
    • /
    • 1979
  • The carborundum abrasive specimens bonded with a soda-borosilicate glass were prepared. Samples fired at specified temperatures with various mixing ratio and forming pressure were examined in terms of the structure, bonding strength, and microscopic observations. Increasing the forming pressure up to 400kg/$\cm^2$, the structure became denser in proportion to the forming pressure. The bonding strength was generally increased with increasing the mixing ratio (Vb/Vg), but the bloating phenomena were observed when samples were fired above 95$0^{\circ}C$ with mixing ratio above 20%, consequently, the bonding strength was decreased. Samples fired at the temperature range 900~95$0^{\circ}C$ with mixing ratio 15~30% had the dense structure with various grades.

  • PDF

Fabrication of SiCOI Structures for MEMS Applications in Harsh Environments (극한 환경 MEMS용 SiCOI 구조 제작)

  • Chung, Gwiy-Sang;Chung, Yun-Sik;Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.264-269
    • /
    • 2004
  • This paper describes on an advanced technology of 3C-SiC/Si(100) wafer direct bonding using PECVD oxide to intermediate layer for SiCOI(SiC-on-Insulator) structure because it has an attractive characteristics such as a lower thermal stress, deposition temperature, more quick deposition rate and higher bonding strength than common used poly-Si and thermal oxide. The PECVD oxide was characterized by ATR-FTIR. The bonding strength with variation of HF pre treatment condition was measured by tensile strength measurement system. After etch-back using TMAH solution, roughness of 3CSiC surface crystallinity and bonded interface was measured and analyzed by AFM, XRD, and SEM respectively.

An Investigation of Microstructural Evolution and Sliding Wear Behavior of Ultra-Fine Grained 5052 Aluminum Alloy Fabricated by a Accumulative Roll-Bonding Process (누적압연접합에 의한 5052 Al 합금의 결정립 미세화와 기계적 특성 연구)

  • 하종수;강석하;김용석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.84-87
    • /
    • 2003
  • Microstructural evolution and dry sliding wear behavior of ultra-fine grained 5052 Al alloy obtained by an accumulative roll-bonding process have been investigated. After 7 ARB cycles, ultra-fine grains with large misorientations between neighboring grains were obtained. The grain size was about 0.2$\mu\textrm{m}$. The hardness, tensile and yield strengths of the ultra-fine grained alloy increased as the amount of accumulated strain increased with the ARB cycles. Sliding wear teats of the ultra-fine grained 5052 Al alloy were conducted at room temperature. Wear rate of the ultra-fine grained alloy increased in spite of the increase of hardness. Surfaces of the worn specimens were examined with SEM to investigate wear mechanism of the ultra-fine grained alloy.

  • PDF

The Consideration of the Damage in Gas Turbine Hot Parts for Repair Bonding Process (가스터빈 고온부품의 재생 접합을 위한 손상부 파악)

  • Kim, S.W.;Choi, C.;Kim, J.C.;Lee, C.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.73-79
    • /
    • 2003
  • The present study was aimed at analysing the damage of a used gas turbine bucket after 39,500h of total service. Microstructures and cracks of service-induced bucket were observed. The crack might have initiated from the coating in the bucket surface by thermal fatigue and propagated into the GTD111 base metal. Maximum depth of penetration was 2.7 mm(full penetration) at the leading edge. Crack contains a lot of Cr-,Ti-,Al-oxide which will prohibit filling and wetting of insert metal. Depth and propagation direction of crack were accorded with centrifugal force and temperature distribution in turbine bucket. Present result will provide basic data for repair bonding process.

  • PDF