• Title/Summary/Keyword: bonding surface

Search Result 1,571, Processing Time 0.026 seconds

A Study on the Fabrication of Flexible Composite Electrodes and Its Bonding Characteristics According to Surface Roughness (유연 복합재료 전극 제조 및 표면조도에 따른 접착 특성에 대한 연구)

  • Lee, Han-Young;Jung, Kyung-Chae;Han, Min-Gu;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.242-247
    • /
    • 2014
  • The fabrication of flexible electrodes coated on the surface of a dielectric elastomer film, which is a type of electroactive polymer (EAP), was carried out. Controlled amounts of Xylitol powder were added (10, 30, 50 and 70 wt%) to the commercial conductive polymer (PEDOT:PSS) to enhance resilience of the electrode. To check resilience of the fabricated composite electrodes, tensile tests were carried out using silicone films coated with the polymer electrodes. From the test results, it was found that 70 wt% Xylitol containing conductive polymer had excellent elongation and high failure strains. Furthermore, surface of the silicone film was uniformly polished with various abrading papers to enhance the wettability of the conductive polymers on the surface of the silicone film. It was found that the silicone film polished with #120 abrading paper had the best wettability and guaranteed excellent bonding behavior.

The electronic structure of the ion-beam-mixed Pt-Cu alloys by XPS and XANES

  • Lim, K.Y.;Lee, Y.S.;Chung, Y.D.;Lee, K.M.;Jeon, Y.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.133-133
    • /
    • 1998
  • In the thin film alloy formation of the transition metals ion-beam-mixing technique forms a metastable structure which cannot be found in the arc-melted metal alloys. Sppecifically it is well known that the studies about the electronic structure of ion-beam-mixed alloys pprovide the useful information in understanding the metastable structures in the metal alloy. We studied the electronic change in the ion-beam-mixed ppt-Ct alloys by XppS and XANES. These analysis tools pprovide us information about the charge transfer in the valence band of intermetallic bonding. The multi-layered films were depposited on the SiO2 substrate by the sequential electron beam evapporation at a ppressure of less than 5$\times$10-7 Torr. These compprise of 4 ppairs of ppt and Cu layers where thicknesses of each layer were varied in order to change the alloy compposition. Ion-beam-mixing pprocess was carried out with 80 keV Ae+ ions with a dose of $1.5\times$ 1016 Ar+/cm2 at room tempperature. The core and valence level energy shift in these system were investigated by x-ray pphotoelectron sppectroscoppy(XppS) pphotoelectrons were excited by monochromatized Al K a(1486.6 eV) The ppass energy of the hemisppherical analyzer was 23.5 eV. Core-level binding energies were calibrated with the Fermi level edge. ppt L3-edge and Cu K-edge XANES sppectra were measured with the flourescence mode detector at the 3C1 beam line of the ppLS (ppohang light source). By using the change of White line(WL) area of the each metal sites and the core level shift we can obtain the information about the electrons pparticippating in the intermetallic bonding of the ion-beam-mixed alloys.

  • PDF

Effect of Heat Treatment on Interface Behavior in Ni-P/Cr Double Layer (열처리 시간에 따른 Ni-P/Cr 이중 도금 층의 계면 거동에 관한 연구)

  • Choi, Myung-Hee;Park, Young-Bae;Rhee, Byong-ho;Byon, Eungsun;Lee, Kyu Hwan
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.6
    • /
    • pp.260-268
    • /
    • 2015
  • The thermal barrier coating (TBC) for inner wall of liquid-fuel rocket combustor consists of NiCrAlY as bonding layer and $ZrO_2$ as a top layer. In most case, the plasma spray coating is used for TBC process and this process has inherent possibility of cracking due to large difference in thermal expansion coefficients among bonding layer, top layer and metal substrate. In this paper, we suggest crack-free TBC process by using a precise electrodeposition technique. Electrodeposited Ni-P/Cr double layer has similar thermal expansion coefficient to the Cu alloy substrate resulting in superior thermal barrier performance and high temperature oxidation resistance. We studied the effects of phosphorous concentrations (2.12 wt%, 6.97 wt%, and 10.53 wt%) on the annealing behavior ($750^{\circ}C$) of Ni-P samples and Cr double layered electrodeposits. Annealing temperature was simulated by combustion test condition. Also, we conducted SEM/EDS and XRD analysis for Ni-P/Cr samples. The results showed that the band layers between Ni-P and Cr are Ni and Cr, and has no formed with heat treatment. These band layers were solid solution of Cr and Ni which is formed by interdiffusion of both alloy elements. In addition, the P was not found in it. The thickness of band layer was increased with increasing annealing time. We expected that the band layer can improve the adhesion between Cr and Ni-P.

Hydrophilic property by contact angle change of ion implanted polycarbonate (이온주입 Polycarbonate의 접촉각 변화에 의한 친수특성)

  • Lee, Chan-Young;Lee, Jae-Hyung;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.533-538
    • /
    • 2003
  • It has been shown that ion implantation produces remarkable improvements in surface-sensitive physical and chemical properties as well as other mechanical properties, in polymers. In this study, ion implantation was performed onto polymer, PC(polycarbonate), in order to investigate surface hydrophilic property through contact angle measurement using distilled water. PC was irradiated with N, Ar, Xe ions at the irradiation energy of $20\;{\sim}\;50keV$ and the dose range of $5{\times}10^{15},\;1{\times}10^{16},\;7{\times}10^{16}\;ions/cm^2$. The contact angle of water has been reduced with increasing fluence and ion mass but increased with increasing implanted energy. The changes of chemical and structural property are discussed in view of infrared spectroscopy and FT-IR, XPS, which shows increasing C-O bonding and C-C bonding. The root mean square of surface roughness examined by means of AFM changed smoothly from 0.387nm to 0.207nm and the change of wettability was discussed with respect to elastic and inelastic collisions obtained as results of TRIM simulation. It was found that wettability of the modified PC surface was affected on change of functional group and nuclear stopping or linear energy transfer(LET, energy deposited per unit track length per ion) that causes chain scission by displacing atom from polymer chains, but was not greatly dependant on surface morphology.

  • PDF

Effect of Laser Processing Patterns on the Bonding Interface Quality during Laser Sintering of Magnesium Alloys with Zirconia (마그네슘 합금 표면의 지르코니아 분말 레이저 소결과정에서 조사 패턴이 접합 계면 품질에 미치는 영향)

  • Yoon, Sangwoo;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.51-57
    • /
    • 2021
  • The quality of the ceramic sintered coating on a metal surface through laser surface treatment is affected by the laser irradiation pattern. Depending on the laser irradiation pattern, the amount of residual stress and heat applied or accumulated on the surface increases or decreases, affecting the thickness attained in the ceramic sintering area. When the heat energy accumulated in the sintering area is high, the ceramic and the metal alloy melt and sufficiently mix to form a homogeneous and thick bonding interface. In this study, the thermal energy accumulation in the region sintered with zirconia was controlled using four types of laser processing patterns. The thickness of the diffusion region is analyzed by laser-induced breakdown spectroscopy of Mg-ZrO2 generated by laser sintering zirconia powder on the magnesium alloy surface. On the basis of the analysis of the Mg and Zr present in the sintered region through LIBS, the effect of the irradiation pattern on the sintering quality is confirmed by comparing and analyzing the heat and mass transfer tendency of the diffusion layer and the degree of diffusion according to the irradiation pattern. The derived diffusion coefficients differed by up to 9.8 times for each laser scanning pattern.

Sem Study of the Adhesion of New Glass Ionomer Cements to Dentin (글라스 아이오노모 시멘트의 상아질 접착에 관한 주사전자현미경적 연구)

  • Pak, Jay
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.7 no.1
    • /
    • pp.42-47
    • /
    • 1998
  • This study was performed to compare the bonding mechanism of glass ionomers. In this study, hybrid glass ionomers were used for restoration(Fuji II LC, GC, Japan) as the material of choice. Two different etching solutions were used in this study, 35% phosphoric acid and 10% polyacrylic acid. The effect of two different conditioners to dentin surface of a primary molar was studied and compared by using scanning electron microscope. Further, the interface of the dentin surface and the hybrid glass ionomers were examined.

  • PDF

Integrated characterization of the corrosion products of Mg alloy (마그네슘 합금 부식 산화물에 대한 특성 연구)

  • Gwon, Sang-Jun;Heo, Jin-Yeong;Lee, Hong-Gi
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.179-180
    • /
    • 2015
  • pure Mg and some Mg alloys are relatively rapidly corroded after operation, resulting in the decrease of mechanical strength and change of local ion concentration. In this study, the corrosion mechanism of biodegradable implant materials was investigated by corrosion tests of the Mg alloy in Hank's solution. Particularly, the crystal structures and chemical bonding state of corrosion reactants was systematically examined.

  • PDF

Temperature Measurement and Contact Resistance of Au Stud Bump Bonding and Ag Paste Bonding with Thermal Heater Device (Au 스터드 범프 본딩과 Ag 페이스트 본딩으로 연결된 소자의 온도 측정 및 접촉 저항에 관한 연구)

  • Kim, Deuk-Han;Yoo, Se-Hoon;Lee, Chang-Woo;Lee, Taek-Yeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • The device with tantalum silicide heater were bonded by Ag paste and Au SBB(Stud Bump Bonding) onto the Au coated substrate. The shear test after Au ABB and the thermal performance under current stressing were measured. The optimum condition of Au SBB was determined by fractured surface after die shear test and $350^{\circ}C$ for substrate, $250^{\circ}C$ for die during flip chip bonding with bonding load of about 300 g/bump. With applying 5W through heater on the device, the maximum temperature with Ag paste bonding was about $50^{\circ}C$. That with Au SBB on Au coated Si substrate showed $64^{\circ}C$. The difference of maximum temperatures is only $14^{\circ}C$, even though the difference of contact area between Ag paste bonding and Au SBB is by about 300 times and the simulation showed that the contact resistance might be one of the reasons.

EFFECT OF COLLAGEN DISSOLUTION IN ACID CONDITIONED DENTIN LAYER ON RESIN-DENTIN ADHESION (산 표면처리된 상아질 표층의 교원섬유 용해가 레진-상아질간 결합에 미치는 영향)

  • Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.856-868
    • /
    • 1995
  • The effect of collagen dissolution in acid conditioned dentin layer on resin - dentin adhesion was investigated. 160 freshly extracted human molars were divided into 4 groups randomly and dentin surfaces were exposed. 40 exposed dentin surfaces were not acid conditioned and each 10 of them were applied with bonding agents within dentin bonding systems of All Bond 2, Scotchbond Multipurpose, Clearfil Photobond and Superbond D - Liner respectively. Each 10 of another 40 exposed dentin surfaces were acid conditioned by the acid within the above four bonding systems respectively and applied with corresponding bonding systems. After acid conditioning of the other 40 exposed dentin surfaces as above, they were treated with 5% NaOCl for 2 minutes, and each 10 of them were applied with the above four dentin bonding systems respectively. The remaining 40 dentin surfaces were acid conditioned and treated with 10% NaOCl for 2 minutes, and each 10 of them were applied with corresponding bonding agents as the above. After the procedures were finished, composite resin (Z -100, 3M Dent. Prod., USA) were applied on the dentin surfaces and light cured. Shear bond strength values were measured. Surface changes of fractured dentin specimens were observed using SEM (Hitachi S-2350, Japan). The following results were obtained. 1. In all of dentin bonding systems, shear bond strengths of non - conditioned specimens were significantly lower than those of acid conditioned specimens (P<0.05). 2. A statistically significant difference of bond strengths did not exist between acid conditioned specimens and 5% NaGCI retreated specimens applied with All Bond 2, Scotchbond Multipurpose and Clearfil Photobond (P>0.05). However, strength values of 5% NaOCl retreated specimens applied with Superbond D - Liner were lower than those of acid conditioned specimens (P<0.05). 3. In all the applied dentin bonding systems except Clearfil Photobond, bond strengths of 10% NaOCl retreated specimens were lower than those of acid conditioned and 5% NaOCl retreated specimens (P<0.05). 4. The resin - dentin hybrid layer of 4 - $5{\mu}m$ thickness was formed in the acid conditioned specimens applied with All Bond 2, Scotchbond Multipurpose and Superbond D-Liner. 5. The resin - dentin hybrid layer of 3 - $4{\mu}m$ thickness was still formed in the 5% NaOCl retreated specimens applied with All Bond 2 and Scotchbond Multipurpose. In addition, this layer was not completely removed after the retreatment with 10% NaOCl. Above results indicate that the dissolution of collagen in acid conditioned dentin layer by NaOCl solution can not be achieved completely and the collagens contribute to the resin - dentin adhesion considerably.

  • PDF