• Title/Summary/Keyword: bonding surface

Search Result 1,571, Processing Time 0.027 seconds

Fundamental Study on Analysis of the Bonding Effect on Asphalt Pavement (아스팔트포장의 경계층 영향에 대한 해석적 기초연구)

  • Choi, Jun-Seong
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.11-21
    • /
    • 2005
  • To examine adequacy of existing multi-layer elastic analysis of layer interface conditions, this study compared outputs of finite element analysis and multi-layer elastic analysis as vertical load was applied to the surface of asphalt pavements. Structural pavement analysis considering influence of a horizontal load was also carried out in order to simulate passing vehicle loads under various interface conditions using ABAQUS, a three dimensional finite element program. Pavement performance depending on interface conditions was quantitatively evaluated and fundamental study of layer interface effect was performed in this study. As results of the study, if only vertical load is applied, subdivision of either fully bonded or fully unbonded is enough to indicate interface condition. On the other hand, when horizontal load is applied with vertical load, pavement behavior and performance are greatly changed with respect to layer interface condition.

  • PDF

Study of the hydrogen concentration of SiNx film by Fourier transform infrared spectroscopy (Fourier transform infrared spectroscopy를 이용한 SiNx박막의 수소농도 연구)

  • Lee, Seok-Ryoul;Choi, Jae-Ha;Jhe, Ji-Hong;Lee, Lim-Soo;Ahn, Byung-Chul
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.215-219
    • /
    • 2008
  • The bonding structure and composition of silicon nitride (SiNx) films were investigated by using Fourier transform infrared spectroscopy (FT-IR). SiNx films were deposited on Si substrate at $340^{\circ}C$ using a conventional PECVD system. The compositions of Si and N in SiNx films were confirmed by using Rutherford backscattering spectroscopy (RBS) and photoluminescence (PL) analysis. The surface morphology of SiNx films was also analyzed by using atomic force microscopy (AFM). It was found that the contents of NH(at. %) is the reverse related with those of SiH corresponding to the result of FT-IR. we conclude that a quantitative analysis on SiNx films can be possible through a precise detection of the contents of H in SiNx films with a FT-IR analysis only.

Analysis of the Change in Microstructures of Nano Copper Powders During the Hydrogen Reduction using X-ray Diffraction Patterns and Transmission Electron Microscope, and the Mechanical Property of Compacted Powders (X-선 회절 패턴 측정과 투과 전자 현미경을 이용한 구리 나노분말의 수소 환원 처리 시 발생하는 미세조직 변화 및 치밀화 시편의 물성 분석)

  • Ahn, Dong-Hyun;Lee, Dong Jun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relatively high temperature of $350^{\circ}C$ in order to eliminate surface oxide layers, which are the main obstacles for fabricating a nano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure before and after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patterns using the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD line profile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduction treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as the basis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of the particles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results demonstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders is achieved.

Manufacturing and Evaluation of the Properties of Hybrid Bulk Material by Shock-compaction of Nanocrystalline Cu-Ni Mixed Powder (나노 구리-니켈 혼합분말의 충격압축법을 통한 복합벌크재의 제조 및 특성평가)

  • Kim, Wooyeol;Ahn, Dong-Hyun;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • In this study, nanocrystalline Cu-Ni bulk materials with various compositions were cold compacted by a shock compaction method using a single-stage gas gun system. Since the oxide layers on powder surface disturbs bonding between powder particles during the shock compaction process, each nanopowder was hydrogen-reduced to remove the oxide layers. X-ray peak analysis shows that hydrogen reduction successfully removed the oxide layers from the nano powders. For the shock compaction process, mixed powder samples with various compositions were prepared using a roller mixer. After the shock compaction process, the density of specimens increased up to 95% of the relative density. Longitudinal cross-sections of the shock compacted specimen demonstrates that a boundary between two powders are clearly distinguished and agglomerated powder particles remained in the compacted bulk. Internal crack tended to decrease with an increase in volumetric ratio of nano Cu powders in compacted bulk, showing that nano Cu powders has a higher coherency than nano Ni powders. On the other hand, hardness results are dominated by volume fraction of the nano Ni powder. The crystalline size of the shock compacted bulk materials was greatly reduced from the initial powder crystalline size since the shock wave severely deformed the powders.

Fabrication of SOI Structures with Buried Cavities for Microsystems SDB and Electrochemical Etch-stop (SDB와 전기화학적 식각정지에 의한 마이크로 시스템용 매몰 공동을 갖는 SOI 구조의 제조)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo;Choi, Sung-Kyu
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • This paper describes a new process technique for batch process of SOI(Si-on-Insulator) structures with buried cavities for MEMS(Micro Electro Mechanical System) applications by SDB(Si-wafer Direct Bonding) technology and electrochemical etch-stop. A low-cost electrochemical etch-stop method is used to control accurately the thickness of SOI. The cavities were made on the upper handling wafer by Si anisotropic etching. Two wafers are bonded with an intermediate insulating oxide layer. After high-temperature annealing($1000^{\circ}C$, 60 min), the SDB SOI structure with buried cavities was thinned by electrochemical etch-stop. The surface of the fabricated SDB SOI structure have more roughness that of lapping and polishing by mechanical method. This SDB SOI structure with buried cavities will provide a powerful and versatile substrate for novel microsensors arid microactuators.

EFFECT OF THE APPLICATION TIME OF SELF-ETCHING PRIMERS ON THE BONDING OF ENAMEL (자가부식 프라이머의 적용시간이 법랑질 접착에 미치는 영향)

  • Jin, Cheol-Hee;Cho, Young-Gon;Kim, Soo-Mee;Lee, Myeong-Seon
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.224-234
    • /
    • 2008
  • The purpose of this study was to compare the normal and two times of application time of six self-etching primers applied to enamel using microshear bond strength (uSBS) test and the finding of scanning electronic microscope (SEM). Crown of sixty human molars were bisected mesiodistally and buccal and lingual enamel of crowns were partially exposed and polished with 600 grit SiC papers. They were divided into one of two equal groups subdivided into one of six equal groups (n = 10) by self-etching primer adhesives. After the same manufacture's adhesive resin and composites were bonded on the enamel surface of each group, the bonded specimens were subjected to uSBS testing and also observed under SEM. In conclusion, generally two times of primer application time increased the enamel uSBS, especially with the statistical increase of bond strength in adhesives involving high-pH primers.

  • PDF

Bond Performance of Magnesium Potassium Phosphate Cement Mortar according to Moisture Condition of Substrate (바탕면 함수조건에 따른 마그네시아 인산칼륨 시멘트 모르타르의 부착성능)

  • Kang, Suk-Pyo;Kim, Jae-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • This study focuses on the investigation of bond strength of magnesium potassium phosphate cement mortar(MKPC) according to moisture condition of substrate. Tensile bond test, shear bond test and interfacial bond test are adopted for evaluating the adhesion characteristics of MKPC to conventional cement mortar substrate. The main experimental variables are test methods and moisture levels of substrate. Because the moisture condition of the substrate may be critical to achieving bond, optimum moisture condition for a conventional concrete substrate has evaluated in this study. The results are as follows ; The effects of moisture condition at substrate into the bonding of MKPC are less different than polymer cement mortar and epoxy mortar. But the saturated and surface dry condition is the most appropriate moisture level among the considered, followed by saturated condition and wet condition. Thus, an adequate moisture level of substrate for MKPC is essential for good bond strength.

THE EFFECT OF SIZE AND SHAPE OF RETENTION ELEMENT ON COMPOSITE TO METAL BOND STRENGTH (유지요소의 크기와 형태가 간접복합레진과 금속간의 결합강도에 미치는 영향)

  • Lee, Yun-Jung;Jeon, Young-Chan;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.665-674
    • /
    • 2007
  • Purpose: The purpose of this study was to investigate the effect of sire and shape of retention element on the bond strength of indirect composite resin and metal. Material and method: The metal disk specimens, each 6mm in diameter, were cast from CrCo alloy. They were divided into 8 groups by applied retention element. retention bead group $B2\;({\phi}\;0.2mm),\;B4\;({\phi}\;0.4mm),\;B6\;({\phi}\;0.6mm),\;B8\;({\phi}\;0.8mm)$, retention crystal group C2 (0.2mm), C5 (0.5mm), C8 (0.8mm) and sandblasting group SB ($110{\mu}m\;Al_2O_3$ blasting) as control. Eighty-eight metal specimens were veneered with $TESCERA^{(R)}$ Indirect resin system. One specimen of each group was sectioned and the resin-metal bonding pattern at the interface was observed under measuring microscope. Other specimens were then tested for tensile bond strength on an Instron universal testing machine at a crosshead speed of 2mm/min. Results: 1. Compared to sandblasting, beads or crystals increased the resin-metal bond strength (P<.05). 2. 0.2mm retention crystals were most effective in improving the resin-metal bond strength (P>.05). 3. 0.2mm beads showed the highest bond strength among retention bead groups, but there was no statistically significant difference (P>.05). 4. Retention crystals tend to be higher in bond strength than retention beads due to wider surface area. 5. The larger retention element, the larger the undercut for the mechanical retention, but the gap at resin-metal interface was also increased. Conclusion: Within the limitations of this study, 0.2mm retention crystals were most effective in improving the resin-metal bond strength.

Fabrication and packaging techniques for the application of MEMS strain sensors to wireless crack monitoring in ageing civil infrastructures

  • Ferri, Matteo;Mancarella, Fulvio;Seshia, Ashwin;Ransley, James;Soga, Kenichi;Zalesky, Jan;Roncaglia, Alberto
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.225-238
    • /
    • 2010
  • We report on the development of a new technology for the fabrication of Micro-Electro-Mechanical-System (MEMS) strain sensors to realize a novel type of crackmeter for health monitoring of ageing civil infrastructures. The fabrication of micromachined silicon MEMS sensors based on a Silicon On Insulator (SOI) technology, designed according to a Double Ended Tuning Fork (DETF) geometry is presented, using a novel process which includes a gap narrowing procedure suitable to fabricate sensors with low motional resistance. In order to employ these sensors for crack monitoring, techniques suited for bonding the MEMS sensors on a steel surface ensuring good strain transfer from steel to silicon and a packaging technique for the bonded sensors are proposed, conceived for realizing a low-power crackmeter for ageing infrastructure monitoring. Moreover, the design of a possible crackmeter geometry suited for detection of crack contraction and expansion with a resolution of $10{\mu}m$ and very low power consumption requirements (potentially suitable for wireless operation) is presented. In these sensors, the small crackmeter range for the first field use is related to long-term observation on existing cracks in underground tunnel test sections.

Effect of SMA on the Interfacial Shear Strength for Single Glass Fiber and PC/SAN Blends (SMA가 PC/SAN 블렌드와 유리섬유간의 계면결합력에 미치는 영향)

  • Lee, Ui-Hwan;Nam, Gi-Jun;Lee, Jae-Uk
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.512-520
    • /
    • 2001
  • One of the most important factors which affect the mechanical properties of fiber-reinforced composite materials is the interfacial shear strength (IFSS). The IFSS of glass fiber and polycarbonate (PC)/styrene-co-acrylonitrile (SAN) blend system has been measured by the single fiber fragmentation test (SFFT). SAN contents were varied up to 30 wt% and the IFSS increased with the SAN contents. Styrene-co-maleic anhydride (SMA) was used as the compatibilizer and the glass fiber was surface treated with organosilane coupling agents. Addition of small amount of SMA in PC/SAN blend improved the IFSS by chemical bonding between maleic anhydride and silanol. The optimum MA content was 0.4 wt% of total matrix contents. Also, IFSS was greatly affected by the miscibility condition of SAN/SMA blends, which depended on the copolymer composition of SAN and SMA. It was found out that, higher IFSS could be obtained when the SAN/SMA blend was in miscible pairs. In case of SAN/SMA miscible pairs, the IFSS depended on the MA content in total matrix, not on the MA content in SMA.

  • PDF