• Title/Summary/Keyword: bonding stress

Search Result 447, Processing Time 0.025 seconds

Analysis on the Interfacial Bond-Slip Relationship between ear Surface-Mounted FRP Plate and Concrete (콘크리트내 표면매입 보강된 FRP 판과 콘크리트 사이의 착-미끄러짐 관계 해석)

  • Seo, Soo-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • In this paper, a stress transfer mechanism between near surface-mounted (NSM) fiber reinforced polymer (FRP) plate and concrete was investigated and a reliable analytical procedure for it was presented by using bilinear bond-slip model simulating the bond behavior of NSM FRP plate. As a result, critical values in the bi-linear model such as maximum shear strength, slip at that time and failure slip at the initiation of softening de-bonding were suggested for being used in the differential equation considering he interfacial characteristic between NSM FRP and concrete. Also, it was found that the bond-slip behavior could be suitably redicted by using the proposed procedure even in the case of various bond lengths from the comparison with bond test result.

Numerical study of anomaly detection under rail track using a time-variant moving train load

  • Chong, Song-Hun;Cho, Gye-Chun;Hong, Eun-Soo;Lee, Seong-Won
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.161-171
    • /
    • 2017
  • The underlying ground state of a railway plays a significant role in maintaining the integrity of the overlying concrete slab and ultimately supporting the train load. While effective nondestructive tests have been used to evaluate the rail track system, they can only be performed during non-operating time due to the stress wave generated by active sources. In this study, finite element numerical simulations are conducted to investigate the feasibility of detecting unfavorable substructure conditions by using a moving train load. First, a train load module is developed by converting the train load into time-variant equivalent forces. The moving forces based on the shape functions are applied at the nodes. A parametric study that takes into account the bonding state and the train class is then performed. All the synthetic signals obtained from numerical simulations are analyzed at the frequency domain using a Fast Fourier transform (FFT) and at the time-frequency domain using a Short-Time Fourier transform (STFT). The presence of a void condition amplifies the acceleration amplitude and the vibration response. This study confirms the feasibility of using a moving train load to systematically evaluate a rail track system.

The Study on Notch Strength Characteristics with Circular Hole Notch in A17075/CFRP Layered Composites (원공노치를 갖는 A17075/CFRP 적층 복합재의 노치강도 특성에 관한 연구)

  • 이제헌;김영환;박준수;윤한기
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.58-66
    • /
    • 2000
  • CARALL(Carbon fiber reinforced aluminum laminates) was fabricated with CFRP prepreg and A17075, using a autoclave. The mechanical properties of three samples i.e. A17075, CFRP and CARALL were also investigated as a function of size in circular holes. Theoretical approach into analysing mechanical behaviors near the circular hole notch was carried out to compare with experimental data, furthermore. By the adhesive bonding of A17075 to CFRP, abrupt strength reduction was prevented. From the consideration of modified point stress failure criterion, predicted results was well consistent with the experimental one.

  • PDF

Photoelastic Determination of Stress Intensity Factors by Teflon Molding Method - Evaluation of The Method In Terms of Two Dimensional Mode I and Mode II - (테프론 모울딩법 에 의한 S .I .F.의 광탄성 실험해석 - 이차원 S .I .F. 문제에 대한 실험방법 의 정도평가 -)

  • 최선호;황재석;채영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 1983
  • The photoelastic determination of S.I.F. in Fracture mechanics has been regarded as one of the most effective and practical experimental methods in which stresses are read directly, except a few shortcomings involved in the process of experiment; the difficulties of making a sharp crack tip similar to the practical one and nearly impossibilities of carving an arbitrarily shaped crack on the test plate, etc. To eliminate flaws mentioned above, recently, Kitagawa and Watanabe of Tokyo Univ.developed a new method named"Teflon Insert Method". which has improved experimental accuracy to a considerable extent byt remaining still room for further improvement, that is, the elimination of bonding boundary scars which render photoelastic fringes obscure. In this paper, a newly exploited"Teflon Molding Method" was attempted for the completion of teflon-epoxy experimental method. The experimental results obtained by this method are compared with existent theoretical and experimental values to evaluate its accuracy. As result, 1-6% of margin of errors were appeared in a series of photoelastic experiments which defied any other conventional method in terms of experimental accuracy.perimental accuracy.

A Study on the Behavior Characteristics of a New-Type FRP-Concrete Composite Deck (신개념 FRP-콘크리트 합성 바닥판의 거동 특성 고찰)

  • Cho Keunhee;Chin Won Jong;Kim Sung Tae;Cho Jeong-Rae;Kim Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.746-749
    • /
    • 2004
  • A new-type of FRP-concrete composite bridge deck system is proposed and its behaviors are experimentally studied. The new-typedeck consists of FRP as a permanent form and main tension resisting member and concrete as a compression resisting member. A suitable bonding method such as silica coating is applied to the interface between FRP and concrete to ensure composite behavior. The proposed deck system uses the box-shape FRP member, while a typical FRP-concrete composite deck uses the I-shape FRP member. Theproposed deck system has inherent advantages of a FRP-concrete composite deck like corrosion free and easy construction. The new-type deck shows the equal performances compared to a previous one, and has the advantage of reducing self-weight. In this study, the static tests on 3-span FRP-concrete decks in full scale are carried out, so that load-displacement relation, stress distribution, failure mode and design criteria are analyzed. The test results show that the deflection design criterion (L/800, L: span length) is satisfied at the service load state. No concrete tensile crack occurs in the negative moment region above the main girder, regardless of no tensile reinforcement at upper concrete portion.

  • PDF

Lab Weldability of Pure Titanium by Nd:YAG Laser (Nd:YAG 레이저를 이용한 순티타늄판의 겹치기 용접성)

  • Kim, Jong-Do;Kwak, Myung-Sub
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.315-322
    • /
    • 2008
  • Titanium and its alloys have excellent corrosion resistance, high strength to weight ratios and creep properties in high temperature, which make them using many various fields of application. Especially, pure titanium, which has outstanding resistance for the stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion, brings out to the best material for the heat exchanger, ballast tank, desalination facilities, and so on. Responding to these needs, welding processes for titanium are also being used GTAW, GMAW, PAW, EBW, LBW, resistance welding and diffusion bonding, etc. However, titanium is very active and highly susceptible to embrittlement by oxygen, nitrogen, hydrogen and carbon at high temperature, so it needs to shield the weld metal from the air and these gases during welding by non-active gas. In this study, it was possible to get sound beads without humping and spatter with a decrease of peak power according to increase of pulse width, change of welding speed and overlap rate for heat input control, and shield conditions at pulsed laser welding of titanium plates for Lap welding.

Uncooled Microbolometer FPA Sensor with Wafer-Level Vacuum Packaging (웨이퍼 레벨 진공 패키징 비냉각형 마이크로볼로미터 열화상 센서 개발)

  • Ahn, Misook;Han, Yong-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.300-305
    • /
    • 2018
  • The uncooled microbolometer thermal sensor for low cost and mass volume was designed to target the new infrared market that includes smart device, automotive, energy management, and so on. The microbolometer sensor features 80x60 pixels low-resolution format and enables the use of wafer-level vacuum packaging (WLVP) technology. Read-out IC (ROIC) implements infrared signal detection and offset correction for fixed pattern noise (FPN) using an internal digital to analog convertor (DAC) value control function. A reliable WLVP thermal sensor was obtained with the design of lid wafer, the formation of Au80%wtSn20% eutectic solder, outgassing control and wafer to wafer bonding condition. The measurement of thermal conductance enables us to inspect the internal atmosphere condition of WLVP microbolometer sensor. The difference between the measurement value and design one is $3.6{\times}10-9$ [W/K] which indicates that thermal loss is mainly on account of floating legs. The mean time to failure (MTTF) of a WLVP thermal sensor is estimated to be about 10.2 years with a confidence level of 95 %. Reliability tests such as high temperature/low temperature, bump, vibration, etc. were also conducted. Devices were found to work properly after accelerated stress tests. A thermal camera with visible camera was developed. The thermal camera is available for non-contact temperature measurement providing an image that merged the thermal image and the visible image.

Evolution of Crystal Structure by Post-extension in Nylon 56 Fibers (연신에 따른 나일론 56 섬유의 결정 구조 및 수소결합 변화)

  • Jo, Kuk Hyun;Cho, Jung Hyeong;Kim, Hyo Jung;Lee, Hyun Hwi
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • The crystal structure of nylon 56 fibers post extended by drawing process was investigated by synchrotron x-ray scattering measurement. In as-cast fiber, distinct (004) and (020) diffraction peaks were observed and they were related to initial metastable alignment of nylon molecules. With increase in the drawing ratio, (110) peak intensity was increased in vertical direction with decreasing (020) peak. At the same time, (004)' peak evolved position tilted to 29 degrees from the (004) peak. This evolution is directly related to stable crystalline phase of nylon 56 originated from additional formation of hydrogen bondings between N-H and C=O by post drawing process. We also compared density variation, stress-strain curves of the fiber as a function of drawing ratio and strain. The variations of density and tanacity also supported the increase of stable structure of nylon 56.

Experimental and numerical prediction of the weakened zone of a ceramic bonded to a metal

  • Zaoui, Bouchra;Baghdadi, Mohammed;Mechab, Belaid;Serier, Boualem;Belhouari, Mohammed
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.295-311
    • /
    • 2019
  • In this study, a three-dimensional Finite Element Model has been developed to estimate the size of the weakened zone in a bi-material a ceramic bonded to metal. The calculations results were compared to those obtained using Scanning Electron Microscope (SEM). In the case of elastic-plastic behaviour of the structure, it has been shown that the simulation results are coherent with the experimental findings. This indicates that Finite Element modeling allows an accurate prediction and estimation of the weakening effect of residual stresses on the bonding interface of Alumina. The obtained results show us that the three-dimensional numerical simulation used by the Finite Element Method, allows a good prediction of the weakened zone extent of a ceramic, which is bonded with a metal.

3-D finite Element Analysis for Thermo-Mechanical Behavior of Laminated Carbon-Phenolic Composite Ring for Rocket Nozzle Insulator (로켓 노즐 내열부품용 탄소-페놀 복합재 적층링의 열기계적 거동에 대한 3차원 유한요소 해석)

  • Lee, Sun-Pyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.47-53
    • /
    • 2006
  • In this paper, the thermal insulator structure of a real rocket which is fabricated in a way that laminated composite rings are connected in series is analyzed using 3-dimensional axisymmetric finite element models. Simulation of cowl zone using a real operating conditions provides that the stress distribution in the laminated composite ring is largely influenced by ply-angles, axial dimensions, and boundary conditions. Notably the plylift that is the precursor to the wedge-out occurs in the ring-to-ring bonding region. It is hypothesized that after the plylift the wedge is dropped out due to the shear stresses in the ply-angle direction and axial compressive stresses.