• Title/Summary/Keyword: bonding stress

Search Result 447, Processing Time 0.024 seconds

Fracture Analysis of Electronic IC Package in Reflow Soldering Process

  • Yang, Ji-Hyuck;Lee, Kang-Yong;Lee, Taek sung;Zhao, She-Xu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.357-369
    • /
    • 2004
  • The purposes of the paper are to analyze the fracture phenomenon by delamination and cracking when the encapsulant of plastic IC package with polyimide coating shows viscoelastic behavior under hygrothermal loading in the IR soldering process and to suggest more reliable design conditions by the approaches of stress analysis and fracture mechanics. The model is the plastic SOJ package with the polyimide coating surrounding chip and dimpled diepad. On the package without cracks, the optimum position and thickness of polyimide coating to decrease the maximum differences of strains at the bonding surfaces of parts of the package are studied. For the model delaminated fully between the chip and the dimpled diepad, C(t)-integral values are calculated for the various design variables. Finally, the optimal values of design variables to depress the delamination and crack growth in the plastic IC package are obtained.

A Study on PECVD Silicon Nitride Thin Films for IC Chip Packaging (IC 칩 패키지용 PECVD 실리콘 질화막에 관한 연구)

  • 조명찬;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.220-223
    • /
    • 1996
  • Mechanical properties of Plasma-Enhanced Chemical Vapor Deposited (PECVD) silicon nitride thin film was studied to determine the feasibility of the film as a passivation layer over the aluminum bonding areas of integrated circuit chips. Ultimate strain of the films in thicknesses of about 5 k${\AA}$ was measured using four-point bending method. The ultimate strain of these films was constant at about 0.2% regardless of residual stress. Intrinsic and residual stresses of these films were measured and compared with thermal shock and cycling test results. Comparison of the results showed that more tensile films were more susceptible to crack- induced failure.

  • PDF

Joint Design of Steel-Aluminum Power Steering Cylinder by using FE Analysis with Cohesive Zone Model (Cohesive Zone Model을 이용한 동력조향 유압실린더의 스틸-알루미늄 접착부 설계)

  • Lee, C.J.;Lee, S.K.;Ko, D.C.;Schafer, H.;Lee, J.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.385-391
    • /
    • 2009
  • An adhesively bonded power steering cylinder with a steel tube and an aluminum bracket was developed to reduce the weight of steering systems. To achieve the joint strength between the steel tube and of the aluminum bracket, the shape aluminum bracket re-designed by using the FE-analysis. Fracture behavior of the adhesive layer was considered by a cohesive zone model(CZM), which is based on the two-parameter fracture phenomenon with critical stress and fracture toughness. From the result of FE-analysis with CZM, re-designed power steering cylinder satisfied the desired joint strength for axial and torsion modes. And its joint strength was verified by the fracture test in each mode.

Stress-Strain Behavior of the Electrospun Thermoplastic Polyurethane Elastomer Fiber Mats

  • Lee Keunhyung;Lee Bongseok;Kim Chihun;Kim Hakyong;Kim Kwanwoo;Nah Changwoon
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.441-445
    • /
    • 2005
  • Thermoplastic polyurethane elastomer (TPUe) fiber mats were successfully fabricated by electrospinning method. The TPUe fiber mats were subjected to a series of cycling tensile tests to determine the mechanical behavior. The electrospun TPUe fiber mats showed non-linear elastic and inelastic characteristics which may be due to slippage of crossed fiber (non-bonded or physical bonded structure) and breakage of the electro spun fibers at junctions (point-bonded or chemical bonding structure). The scanning electron microscopy (SEM) images demonstrated that the point-bonded structures of fiber mats played an important role in the load-bearing component as determined in loading-unloading component tests, which can be considered to have a force of restitution.

A study on the behavior of fatigue crack propagation near the holes or inclusions (구멍 또는 내재물 가까이에서의 피로 Crack 전파거동에 관한 연구)

  • 조재웅;한문식;김상철
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.32-39
    • /
    • 1985
  • Fatigue lives of C.T. specimens containing the holes or the holes filled with other materials are investiated by experimental and analytical methods. The results of the study are as follows; 1) The fatigue lives are in the order of E'/E > 1, E'/E = 1, and E'/E < 1, where E' is the Young's modulus of other materials filling holes and E is that of matrix. 2) The fatigue life of E'/E = 0 is shortest than thost of E'/E > 1, E'/E = 1 and E'/E < 1. 3) The fatigue life of C.T. specimen containing the holes filled with other materials is shorter than that of matrix without holes. 4) Because of the stress concentration around the bonding boundary, crack initiates from the lower left on the boundary and propagates toward the upper right along the boundary.

  • PDF

An Experimental Study on Shear Strength of Reinforced Concrete Beams Strengthened by Fiber Reinforced Polymer (섬유보강 철근콘크리트 보의 전단강도에 대한 실험적 연구)

  • Hwang Hyun-Bok;Lee Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.371-374
    • /
    • 2005
  • The research reported in this paper provides the test results of eleven reinforced concrete beams strengthened with FRP composites. Three parameters were considered in this investigation: the amount of FRP composites, the types of bonding schemes(continuous sheets or strips), and the material types of FRP composites (Carbon or Glass). The experimental results indicated that because the rupture strain of FRP composites was relatively higher that the yield strain of steel bars, the RC beams strengthened with FRP composites failed due to concrete crushing before the FRP composites arrived at its rupture strain. The compatibility-aided truss model showed reasonable agreement between the predicted and experimental shear stress-strain curves of the beams throughout the entire loading history.

  • PDF

Fatigue Crack Growth Behavior of the Thin-to-Thick Type Stiffened Panels with Bonded Patch (접착 패칭된 박-후판 결합형 보강판의 피로균열성장 거동)

  • Rhee, Hwan-Woo;Kim, Seung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.89-95
    • /
    • 2008
  • Fatigue cracked components often needs to be repaired during service. Standard repair schemes involve strengthening the component by connecting reinforcing members by means of rivets or welding by reducing the crack-tip stress intensity factors. Recent technological advances in fiber reinforced composite materials and adhesive bonding have led to the development of efficient repair schemes. In this study, the influence of various shape parameters on fatigue crack growth in the CCT type uniform thickness plates and the thin-ta-thick type stiffened panels repaired with woven fabric type Kevlar-Epoxy composite patch are studied experimentally.

A CMOS Compatible Micromachined Microwave Power Sensor (CMOS 공정과 호환되는 마이크로머시닝 기술을 이용한 마이크로파 전력센서)

  • 이대성;이경일;황학인;이원호;전형우;김왕섭
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.439-442
    • /
    • 2002
  • We present in this Paper a microwave Power sensor fabricated by a standard CMOS process and a bulk micromachining process. The sensor consists of a CPW transmission line, a resistor as a healer, and thermocouple arrays. An input microwave heater, the resistor so that the temperature rises proportionally to the microwave power and tile thermocouple arrays convert it to an electrical signal. The sensor uses air bridged 8round of CPW realized by wire bonding to reduce tile device size and cost and to improve the thermal impedance. Al/poly-Si junctions are used for the thermocouples. Poly-Si is used for tile resister and Aluminium is for transmission line. The resistor and hot junctions of the thermocouples are placed on a low stress silicon nitride diaphragm to minimize a thermal loss. The fabricated device operates properly from 1㎼ to 100㎽\ulcorner of input power. The sensitivity was measured to be ,3.2~4.7 V/W.

  • PDF

Assessment of Bond-Slip Interface Model with Concrete and CFRP Plates (콘크리트와 탐소섬유판 계면의 본드-슬립모델 산정)

  • Yang Dong suk;Koh Byung Soon;Park Sun Kyu;You Young Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.635-638
    • /
    • 2004
  • External bonding of steel plates has been used to strengthen deficient reinforced-concrete structures since the 1960s. In recent years, fiber-reinforcde polymer(FRP) plates have been increasingly used to replace steel plates due to their superior properties. This paper is concerned with anchorage failure due to crack propagation parallel to the boned plated near or along the adhesive/concrete interface, staring from the critically stressed position toward the anchored end of the plates. Factor of bond-slip interface model is average bond stress, effective length, slip volume and fracture energy. The aim of the present paper is to provide a comprehensive assessment of bond-slip interface model with concrete and CFRP plates.

  • PDF

Hydrolytic stability of novel silane coupling agents with phenyl group

  • NiHeil, T.;Kuratal, S.;Ohashi, K.;Omotol, N.;Kondo, Y.;Memoto, K.U;Yoshino, N.;Teranaka, T.
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.605-605
    • /
    • 2003
  • Novel silane coupling agents containing hydrophobic phenyl group 3-(3-methoxy-4-methacryloyloxyphenyl) propyl-trimethoxysilane(p-MPS), -triisocyanatesilane (p-MBI), -trichlorosilane (p-MBC) were synthesized. The bonding durability of these silanes against water immersion and thermal stress was investigated. 3-methacryloyloxypropyltrimethoxysilane (3-MPG) was used as a control. The glass modified with those silanes at a concentration of 2wt% were kept for 3 minutes at $120^{\circ}C$, and then were bonded to the heaped metal with self-cured resin composite.(omitted)

  • PDF