• Title/Summary/Keyword: bonding strain

Search Result 187, Processing Time 0.023 seconds

A 1D model considering the combined effect of strain-rate and temperature for soft soil

  • Zhu, Qi-Yin;Jin, Yin-Fu;Shang, Xiang-Yu;Chen, Tuo
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • Strain-rate and temperature have significant effects on the one-dimensional (1D) compression behavior of soils. This paper focuses on the bonding degradation effect of soil structure on the time and temperature dependent behavior of soft structured clay. The strain-rate and temperature dependency of preconsolidation pressure are investigated in double logarithm plane and a thermal viscoplastic model considering the combined effect of strain-rate and temperature is developed to describe the mechanical behavior of unstructured clay. By incorporating the bonding degradation, the model is extended that can be suitable for structured clay. The extended model is used to simulate CRS (Constant Rate of Strain) tests conducted on structural Berthierville clay with different strain-rates and temperatures. The comparisons between predicted and experimental results show that the extended model can reasonably describe the effect of bonding degradation on the stain-rate and temperature dependent behavior of soft structural clay under 1D condition. Although the model is proposed for 1D analysis, it can be a good base for developing a more general 3D model.

Finite Element Analysis of Superplastic Forming/Diffusion Bonding Processes (초소성 성형/확산접합 공정의 유한요소 해석)

  • 홍성석;김용환
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.37-46
    • /
    • 1996
  • Superplastic forming/diffusion bonding (SPF/DB) processes were analyzed using a rigid visco-plastic finite element method. The optimum pressure-time relationship for a target strain rate and thickness distributions were predicted by two-node line elements based on the membrane approximation for plane strain. Material behavior during SPF/DB of the integral structures having complicated shapes was investigated. The tying condition is employed for the analysis of inter-sheet contact problems. A movement of rib structure is successfully predicted during the forming.

  • PDF

Strain Transmission Characteristics of Packaged Fiber Bragg Grating Sensors for Structural Health Monitoring

  • Cho, Sung-In;Yoo, Seung-Jae;Kim, Eun-Ho;Lee, In;Kwon, Il-Bum;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.236-243
    • /
    • 2010
  • Fiber Bragg grating(FBG) sensor arrays can be used to monitor the mechanical behavior of the large composite structures such as wind turbine rotor blades and aircrafts. However, brittle FBG sensors, especially multiplexed FBG sensors are easily damaged when they are installed in the flexible structures. As a protection of brittle FBG sensors, epoxy packaged FBG sensors have been presented in this paper. Finite element analysis and experiments were performed to evaluate the effects of adhesives, packaging materials and the bonding layer thickness on the strain transmission. Two types of epoxy were used for packaging FBG sensors and the sensor probes were attached with various bonding layer thickness. It was observed that thin bonding layer with high elastic modulus ratio of the adhesive to packaging provided good strain transmission. However, the strain transmission was significantly decreased when elastic modulus of the adhesive was much lower than the packaged FBG sensor probe's one.

Experimental investigation on CFRP-to-concrete bonded joints across crack

  • Anil, Ozgur;Belgin, Cagatay M.;Kara, M. Emin
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • Bonding of carbon fiber reinforced polymer (CFRP) composites has become a popular technique for strengthening concrete structures in recent years. The bond stress between concrete and CFRP is the main factor determining the strength, rigidity, failure mode and behavior of a reinforced concrete member strengthened with CFRP. The accurate evaluation of the strain is required for analytical calculations and design processes. In this study, the strain between concrete and bonded CFRP sheets across the notch is tested. In this paper, indirect axial tension is applied to CFRP bonded test specimen by a four point bending tests. The variables studied in this research are CFRP sheet width, bond length and the concrete compression strength. Furthermore, the effect of a crack- modeled as a notch- on the strain distribution is studied. It is observed that the strain in the CFRP to concrete interface reaches its maximum values near the crack tips. It is also observed that extending the CFRP sheet more than to a certain length does not affect the strength and the strain distribution of the bonding. The stress distribution obtained from experiments are compared to Chen and Teng's (2001) analytical model.

Nonlinear finite element analysis of effective CFRP bonding length and strain distribution along concrete-CFRP interface

  • Dogan, Ali Baran;Anil, Ozgur
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.437-453
    • /
    • 2010
  • CFRP has been widely used for strengthening reinforced concrete members in last decade. The strain transfer mechanism from concrete face to CFRP is a key factor for rigidity, ductility, energy dissipation and failure modes of concrete members. For these reasons, determination of the effective CFRP bonding length is the most crucial step to achieve effective and economical strengthening. In this paper, generalizations are made on effective bonding length by increasing the amount of test data. For this purpose, ANSYS software is employed, and an experimentally verified nonlinear finite element model is prepared. Special contact elements are utilized along the concrete-CFRP strip interface for investigating stress distribution, load-displacement behavior, and effective bonding length. Then results are compared with the experimental results. The finite element model found consistent results with the experimental findings.

Fabrication and AE Characteristics of TiNi/ A16061 Shape Memory Alloy Composite

  • Park, Young-Chul;Lee, Jin-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.453-459
    • /
    • 2004
  • TiNi/ Al6061 shape memory alloy (SMA) composite was fabricated by hot press method to investigate the microstructure and mechanical properties. Interface bonding between TiNi reinforcement and A1 matrix was observed by using SEM and EDS. Pre-strain was imposed to generate compressive residual stress inside composite. A tensile test for specimen, which under-went pre-strain, was performed at high temperature to evaluate the variation of strength and the effect of pre-strain. It was shown that interfacial reactions occurred at the bonding between matrix and fiber, creating two inter-metallic layers. And yield stress increased with the amount of pre-strain. Acoustic Emission technique was also used to nondestructively clarify the microscopic damage behavior at high temperature and the effect of pre-strain of TiNi/ Al6061 SMA composite.

Microstructure and Mechanical Properties of Oxygen Free Copper Processed by ARB at Low Strain Rate (저변형률속도에서 ARB가공된 무산소동의 미세조직 및 기계적 성질)

  • Lee, Seong-Hee;Han, Seung-Zeon;Lim, Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.521-525
    • /
    • 2007
  • The microstructure and mechanical properties of an oxygen free copper processed by accumulative roll bonding(ARB) at low strain rate were studied. The copper sheets were highly strained up to an equivalent strain of ${\sim}6.4$ by ARB process at ambient temperature. The strain rate of the copper during the ARB was $2.6sec^{-1}$. The microstructure and mechanical properties of the ARB-processed copper were compared to those of the specimens processed by ARB at relatively high strain rate ($37sec^{-1}$). The microstructure and mechanical properties of the copper with ARB process was very similar to each other despite of some differences in recovery.

Characterization of SOI Wafers Fabricated by a Modified Direct Bonding Technology

  • Kim, E.D.;Kim, S.C.;Park, J.M.;Kim, N.K.;Kostina, L.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.47-51
    • /
    • 2000
  • A modified direct bonding technique employing a wet chemical deposition of $SiO_2$ film on a wafer surface to be bonded is proposed for the fabrication of Si-$SiO_2$-Si structures. Structural and electrical quality of the bonded wafers is studied. Satisfied insulating properties of interfacial $SiO_2$ layers are demonstrated. Elastic strain caused by surface morphology is investigated. The diminution of strain in the grooved structures is semi-quantitatively interpreted by a model considering the virtual defects distributed over the interfacial region.

  • PDF

Composite Iso-Grid Panel Production and Buckling Test (복합재 Iso-Grid 패널 제작 및 좌굴시험)

  • Yoo Jae-Seok;Kim Kwang-Soo;Jang Young-Soon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.51-55
    • /
    • 2004
  • A composite Iso-grid panel is manufactured and tested by compressive load. Vertical stringers and side stringers are joined with skin by secondary bonding using a liquid type adhesive. Bonding fixtures were developed to attach the stringers to skin. A-scan was done for inspection of secondary bonding region. The out of displacement field is visualized by shadow moire system. The strain and vertical displacement are measured by strain gages and L VDT (Linear Variable Differential Transformer). A local buckling is occurred at all grid sections. After that, the final failure is occurred. The strain of side stringer is much less than that of vertical stringer and skin. Due to the side stringer, the local buckling is delayed. Therefore the ratio of the first buckling to failure load is greater than that of vertical stringer stiffened panel.

  • PDF

A Study on the Nondestructive Test Method for Adhesively Bonded Joint in Motor Case Assembly (연소관 조립체의 접착 체결부에 대한 비파괴 시험 방법 연구)

  • Hwang, Tae-Kyung;Lee, Sang-Ho;Kim, Dong-Ryun;Moon, Soon-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.343-352
    • /
    • 2006
  • In the present paper, the nondestructive test method was suggest to establish the bonding status of a motor case assembly composed of a steel motor case, adiabatic rubber layer and an ablative composite tube with strain data, AE(acoustic emission) signals and UT(ultrasonic test) data. And, finite element analysis was conducted to verify quantitatively the bonding status of motor case assembly under inner pressure loading. The bonding status could be judged whether the bonding status is perfect or contact condition by the data correlation study with AE signals and strain data measured from air pressure test. And, to classify the bonding status of motor case and rubber layer among bonding layers, UT method was also applied. From this study, the bonding status could be classified and detected into fourth types for all bonding layers as follows: (1) initial un-bonding, (2) perfect do-bonding during an air pressure test, (3) partially de-bonding during an air pressure test, and (4) perfect bonding.