• Title/Summary/Keyword: bonding material

Search Result 1,099, Processing Time 0.028 seconds

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

Engineering Character of Ultra Rapid Hardening Concrete-Polymer Composite using CAC and Gypsum Mixed CAC (CAC 및 석고혼입 CAC를 사용한 초속경 콘크리트-폴리머 복합체의 공학적 특성)

  • Koo, Ja Sul;Yoo, Seung Yeup;Kim, Jin Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • Recently, application case of the ultra rapid hardening concrete-polymer composite(URHCPC) are increasing to repair for the deterioration of pavement. But it is a major disadvantage that the main material is expensive and has environmental load. For these reasons, the development of the economic, eco-friendly materials is needed. Calcium Aluminate Composite (CAC), produced by rapid cooling of atomizing method with molten ladle furnace slag, is a material capable of improving the economic feasibility and reducing the environmental load of URHCPC. In this paper, the properties of CAC and gypsum mixed CAC (GC) as alternative materials of RSC according to the types of polymer dispersion were studied. The results were as follows; compressive strength, tensile strength, flexural strength, bonding strength and modulus of elasticity of the composites using CAC or GC showed higher values than those of plain proportion in 3 hour. In later age, they were at the same level as the general proportions. URHCPC using BPD as polymer dispersion had superior strength properties generally. But modulus of elasticity was the same level as the case of using a SBR latex. According to these results, CAC or GC can partially substituted for RSC to product the URHCPC. When URHCPC uses the BPD as the polymer dispersion, it can be improved performance.

AN EXPERIMENTAL STUDY OF THE BOND STRENGTH OF DENTURE TEETH BONDED TO DENTURE BASE MATERIALS (의치용 인공치아와 의치상용 레진간의 결합강도에 관한 실험적 연구)

  • Lee, Joo-Hee;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.464-474
    • /
    • 1996
  • A principal advantage of a plastic tooth over a porcelain tooth should be its ability to bond to the denture base material. But plastic teeth could craze and wear easily, so more abrasion resistant plastic denture teeth have been developed. To resist abrasion, the degree of cross-linking was increased, but bonding to denture base meterial became more difficult. The purpose of this study was to evaluate the bond strength of plastic teeth and abrasion resistant teeth bonded to heat-curing, self-curing and light-curing denture base material. Denture tooth molds were chosen that had a>8mm diameter. The denture teeth was bonded to three denture base materials and then machined to the same dimensions. Three denture base materials were used as control groups. Prior to tensile testing, the specimens were thermocycled between $5^{\circ}C\;and\;55^{\circ}C$ for 1000cycles. Tensile testing was performed on an Instron Universal testing mechine. Experimental group ; plastic teeth(Justi Imperial)+heat-curing resin(Lucitone 199) plastic teeth(Justi Imperial)+light-curing resin(Triad) plastic teeth(Justi Imperial)+self-curing resin(Vertex SC) abrasion resistant teeth(IPN)+heat-curing resin(Lucitone 199) abrasion resistant teeth(IPN)+light-curing resin(Triad) abrasion resistant teeth(IPN)+self-curing resin(Vertex SC) Control group ; heat-curing resin(Lucitone 199) light-curing resin (Triad) self-curing resin(Vertex SC). The results were as follows : 1. The denture teeth bonded to heat-curing resin showed the cohesive failure and those bonded to the other resins showed adhesive failure. 2. Tensile bond strength of the plastic teeth bonded to self-curing resin was not significantly greater than bonded to light-curing resin(p>0.05). 3. Tensile bond strength of the abrasion resistant teeth bonded to self-curing resin was not significantly greater than bonded to light-curing resin(p>0.05). 4. Tensile bond strength of the plastic teeth to self-curing resin was not significantly different from that of the abrasion-resistant teeth(p>0.05). 5. Tensile bond strength of the plastic teeth to light-curing resin was significantly greater than that of the abrasion resistant teeth(p<0.01).

  • PDF

Optimization of Crack-Free Polytypoidally Joined Dissimilar Ceramics of Functionally Graded Material (FGM) Using 3-Dimensional Modeling (폴리타이포이드 경사 방식으로 접합 된 이종 세라믹간의 적층 수의 최적화 및 잔류응력 해석에 대한 연구)

  • Ryu, Sae-Hee;Park, Jong-Ha;Lee, Sun-Yong;Lee, Jae-Sung;Lee, Jae-Chul;Ahn, Sung-Hoon;Kim, Dae-Keun;Chae, Jae-Hong;Riu, Do-Hyung
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.547-551
    • /
    • 2008
  • Crack-free joining of $Si_3N_4\;and\;Al_2O_3$ using 15 layers has been achieved by a unique approach introducing Sialon polytypoids as a functionally graded materials (FGMs) bonding layer. In the past, hot press sintering of multilayered FGMs with 20 layers of thickness $500{\mu}m$ each has been fabricated successfully. In this study, the number of layers for FGM was reduced to 15 layers from 20 layers for optimization. For fabrication, model was hot pressed at 38 MPa while heating up to $1700^{\circ}$, and it was cooled at $2^{\circ}$/min to minimize residual stress during sintering. Initially, FGM with 15 layers had cracks near 90 wt.% 12H / 10 wt.% $Al_2O_3$ and 90 wt.% 12H/10 wt.% $Si_3N_4$ layers. To solve this problem, FEM (finite element method) program based on the maximum tensile stress theory was applied to design optimized FGM layers of crack free joint. The sample is 3-dimensional cylindrical shape where this has been transformed to 2-dimensional axisymmetric mode. Based on the simulation, crack-free FGM sample was obtained by designing axial, hoop and radial stresses less than tensile strength values across all the layers of FGM. Therefore, we were able to predict and prevent the damage by calculating its thermal stress using its elastic modulus and coefficient of thermal expansion. Such analyses are especially useful for FGM samples where the residual stresses are very difficult to measure experimentally.

Low Cycle Fatigue Life Behavior of GFRP Coated Aluminum Plates According to Layup Number (적층수에 따른 GFRP 피막 Al 평활재의 저주기 피로수명 평가)

  • Myung, Nohjun;Seo, Jihye;Lee, Eunkyun;Choi, Nak-Sam
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.332-339
    • /
    • 2018
  • Fiber metal hybrid laminate (FML) can be used as an economic material with superior mechanical properties and light weight than conventional metal by bonding of metal and FRP. However, there are disadvantages that it is difficult to predict fracture behavior because of the large difference in properties depending on the type of fiber and lamination conditions. In this paper, we study the failure behavior of hybrid materials with laminated glass fiber reinforced plastics (GFRP, GEP118, woven type) in Al6061-T6 alloy. The Al alloys were coated with GFRP 1, 3, and 5 layers, and fracture behavior was analyzed by using a static test and a low cycle fatigue test. In the low cycle fatigue test, strain - life analysis and the total strain energy density method were used to analyze and predict the fatigue life. The Al alloy did not have tensile properties strengthening effect due to the GFRP coating. The fatigue hysteresis geometry followed the behavior of the Al alloy, the base material, regardless of the GFRP coating and number of coatings. As a result of the low cycle fatigue test, the fatigue strength was increased by the coating of GFRP, but it did not increase proportionally with the number of GFRP layers.

Demonstration of Magnetoelectric Coupling Measurement at Off-Resonance and Resonance Conditions in Magnetoelectric Composites (자기전기복합체의 비공진 및 공진 상태에서의 자기전기 결합 특성 평가 방법)

  • Patil, Deepak Rajaram;Ryu, Jungho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.333-341
    • /
    • 2022
  • Magnetoelectric (ME) composites are comprised of magnetostrictive and piezoelectric phases. Lots of theoretical and experimental works have been done on ME composites in the last couple of decades. The output performance of ME composites has been enhanced by optimizing the constituent phases, interface layer, dimensions of the ME composites, different operating modes, etc. However, the detailed information about the characterization of ME coupling in ME composites is not provided yet. Therefore, in this tutorial paper, we are giving an insight into the details of measurements of ME voltage coefficient of ME composites both at off-resonance and resonance conditions. A symmetric type Gelfenol/PMN-PZT/Gelfenol ME composites were fabricated by sandwiching (011) 32-mode PMN-PZT single crystal between two Galfenol plates by epoxy bonding are used for the example of ME coupling measurement. The details about the experimental setup used for the measurement of ME voltage coefficient are provided. Furthermore, a step-by-step measurement of ME voltage coefficient using computerized program is demonstrated. We believe the present experimental measurement details can help readers to understand the concept of ME coupling and its analysis.

Synthesis of akermanite bioceramics by solid-state reaction and evaluation of its bioactivity (고상반응법에 의한 아커마나이트 분말의 합성 및 생체활성도 평가)

  • Go, Jaeeun;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • Zirconia and titanium alloys, which are mainly used for dental implant materials, have poor osseointegration and osteogenesis abilities due to their bioinertness with low bioactivity on surface. In order to improve their surface bioinertness, surface modification with a bioactive material is an easy and simple method. In this study, akermanite (Ca2MgSi2O7), a silicate-based bioceramic material with excellent bone bonding ability, was synthesized by a solid-state reaction and investigated its bioactivity from the analysis of surface dissolution and precipitation of hydroxyapatite particles in SBF solution. Calcium carbonate (CaCO3), magnesium carbonate (MgCO3), and silicon dioxide (SiO2) were used as starting materials. After homogeneous mixing of starting materials by ball milling and the drying of at oven, uniaxial pressing was performed to form a compacted disk, and then heat-treated at high temperature to induce the solid-state reaction to akermanite. Bioactivity of synthesized akermanite disk was evaluated with the reaction temperature from the immersion test in SBF solution. The higher the reaction temperature, the more pronounced the akermanite phase and the less the surface dissolution at particle surface. It resulted that synthesized akermanite particles had high bioactivity on particle surface, but it depended on reacted temperature and phase composition. Moderate dissolution occurred at particle surfaces and observed the new precipitated hydroxyapatite particles in synthetic akermanite with solid-state reaction at 1100℃.

Electrochemical Characteristics of High Capacity Anode Composites Using Silicon and CNT for Lithium Ion Batteries (실리콘과 CNT를 사용한 리튬 이온 전지용 고용량 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.446-451
    • /
    • 2022
  • In this study, to improve capacity and cycle stability, the pitch coated nano silicon sheets/CNT composites were prepared through electrostatic bonding of nano silicon sheets and CNT. Silica sheets were synthesized by hydrolyzing TEOS on the crystal planes of NaCl, and then nano silicon sheets were prepared by using magnesiothermic reduction method. To fabricate the nano silicon sheets/CNT composites, the negatively charged CNT after the acid treatment was used to assemble the positively charged nano silicon sheets modified with APTES. THF as a solvent was used in the coating process of PFO pitch. The physical properties of the prepared anode composites were analysed by FE-SEM, XRD and EDS. The electrochemical performances of the synthesized anode composites were performed by current charge/discharge, rate performances, differential capacity and EIS tests in the electrolyte LiPF6 dissolve solvent (EC:DMC:EMC = 1:1:1 vol%). It was found that the anode material with high capacity and stability could be synthesized when high composition of silicon and conductivity of CNT were used. The pitch coated nano silicon sheets/CNT anode composites showed initial discharge capacity of 2344.9 mAh/g and the capacity retention ratio of 81% after 50 cycles. The electrochemical property of pitch coated anode material was more improved than that of the nano silicon sheets/CNT composites.

Interpretation of Making Techniques through Surface Characteristic Analysis and Non-destructive Diagnosis for the Gilt-bronze Seated Buddha in Dangjin Sinamsa Temple, Korea (당진 신암사 금동여래좌상의 표면특성 분석과 비파괴 정밀진단을 통한 제작기술 해석)

  • CHOI Ilkyu ;YANG Hyeri ;HAN Duru;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.1
    • /
    • pp.100-116
    • /
    • 2023
  • The Sinamsa Temple was built in the late Goryeo Dynasty and a gilt-bronze seated Buddha is enshrined in Geungnakjeon hall in the precinct. Various damages occurred in the gilt layer of the Buddha, such as peeling of the gilt layer and deteriorating gloss. In the study, the conservation conditions of the inside and outside on the statue were accurately investigated, and the making technique was interpreted through the material characteristics and non-destructive diagnosis of the statue. As a result, it is estimated that gold-gilding layer is pure gold, coloration pigment of black is carbon, green is malachite, atacamite and verdigris, red is red lead and cinnabar, respectively. In the deterioration evaluation, peeling, cracking, break out and exfoliation of the gilt layer are confirmed as damages, but the conservation condition is relatively wholesome. However, the gloss of the gilt layer is calculated to be wider in the poorer part than the maintenance part. The ultrasonic velocity of the statue was calculated to be 1,230 to 3,987 (mean 2,608) m/s and showed a relatively wide range. In infrared thermography, peeling was not confirmed, and no special bonding marks were found. In endoscope, some biological damage and corrosion were observed on the surface of the internal metal, and sealed artifacts were identified. Manufacturing technique based on the study, it is considered that the gilt-bronze seated Buddha was cast at once, and the mold was inverted to inject molten metal.

Fabrication and Electrochemical Characterization of Carbon Fluoride-based Lithium-Ion Primary Batteries with Improved Rate Performance Using Oxygen Plasma (산소 플라즈마를 이용하여 율속 성능이 개선된 불화탄소 기반 리튬 일차전지의 제조 및 전기 화학적 특성)

  • Seoyeong Cheon;Naeun Ha;Chaehun Lim;Seongjae Myeong;In Woo Lee;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.534-540
    • /
    • 2023
  • The high-rate performance is limited by several factors, such as polarization generation, low electrical conductivity, low surface energy, and low electrolyte permeability of CFX, which is widely used as a cathode active material in the lithium primary battery. Therefore, in this study, we aimed to improve the battery performance by using carbon fluoride modified by surface treatment using oxygen plasma as a cathode for lithium primary batteries. Through XPS and XRD analysis, changes in the surface chemical characteristics and crystal structure of CFX modified by oxygen plasma treatment were analyzed, and accordingly, the electrochemical characteristics of lithium-ion primary batteries were analyzed and discussed. As a result, the highest number of semi-ionic C-F bonds were formed under the oxygen plasma treatment condition (7.5 minutes) with the lowest fluorine to carbon (F/C) ratio. In addition, the primary cell prepared under this condition using carbon fluoride as the active material of the cathode showed the highest 3 F/C(3 C rate-performance) rate-performance and maintained a relatively high capacity (550 mAh/g) even at high rates. In this study, it was possible to produce lithium primary batteries with high-rate performance by adjusting the fluorine contents of carbon fluoride and the type of carbon-fluorine bonding through oxygen plasma treatment.