• 제목/요약/키워드: bonding behavior

검색결과 550건 처리시간 0.023초

Sinter-bonding of Iron Based Compacts Containing P and Cu

  • Pieczonka, Tadeusz;Kazior, Jan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.306-307
    • /
    • 2006
  • The sinter-bonding behavior of iron based powder mixtures was investigated. To produce the green compacts to be joined the following powders based on $H{\ddot{o}}gan{\ddot{a}}s$ AB grade NC 100.24 plain iron powder were used: NC 100.24 as delivered, PNC 30, PNC 60 and NC 100.24 + 4%Cu powder mixtures. Dimensional behaviour of all those materials during the sintering cycle was monitored by dilatometry. Simple ring shaped specimens as the outer parts and cylindrical as the inner parts were pressed. The influence of parts' composition on joining strength was established. Diffusion of alloying elements: copper and phosphorous, across the bonding surface was controlled by metallography, SEM and microanalysis.

  • PDF

보강섬유의 표면처리에 따른 섬유보강 고강도콘크리트와 CFRP 보강근의 부착특성 (Bond Properties of CFRP Rebar in Fiber Reinforced High Strength Concrete with Surface Treatment Methods of Reinforcing Fibers)

  • 박찬기;원종필;차상선
    • 콘크리트학회논문집
    • /
    • 제21권3호
    • /
    • pp.275-282
    • /
    • 2009
  • 본 연구에서는 CFRP 보강근과 고강도콘크리트의 부착강도에 미치는 보강섬유의 표면처리 방법의 효과를 평가하였다. 표면을 친수성 물질로 코팅된 구조용 PVA 섬유 및 기하학적 변형으로 변형된 절곡형 폴리올레핀계 구조용 합성섬유를 보강섬유로 사용하였다. 섬유의 표면처리 방법에 따른 고강도콘크리트의 강도특성을 평가하기 위하여 압축강도 실험을 실시하였다. 고강도콘크리트와 CFRP 보강근 사이의 부착특성은 직접 부착강도시험을 의하여 평가하였다. 시험 결과는 섬유의 표면처리 방법은 고강도콘크리트와 CFRP 보강근 사이의 부착거동에 영향을 미쳤다. 또한 고강도콘크리트에 섬유의 첨가는 할렬균열의 발생 및 성장을 조절함으로써 고강도콘크리트와 CFRP 보강근 사이의 부착거동, 부착강도 및 상대부착강도의 증가시켰다.

보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향 (Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete)

  • 김홍섭;남정수;김정현;한상휴;김규용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권5호
    • /
    • pp.41-50
    • /
    • 2014
  • 본 연구에서는 섬유종류에 따른 인발특성과 섬유보강 콘크리트의 휨특성에 대하여 평가하기 위하여, 섬유의 재질 및 형상 다른 후크형 강섬유, 비정질 강섬유 및 폴리아미드 섬유에 대하여 인발시험과 섬유보강 콘크리트 시험체를 제작하여 휨특성을 평가하였다. 그 결과, 후크형 강섬유의 경우 최대인발하중에서 섬유가 매트릭스로부터 인발되었지만, 비정질 강섬유는 섬유와 매트릭스의 부착강도가 섬유자체의 인장강도보다 높아 섬유가 매트릭스로부터 인발되지 않고 파괴되는 현상을 나타내었다, 한편, 폴리아미드 섬유는 연신율에 의해 최대인발 하중까지 변위가 크게 발생하였으며, 최대하중이후에 섬유가 끊어지는 파괴특성을 나타내었다. 섬유보강 콘크리트의 휨특성에 있어서 비정질 강섬유는 매트릭스와의 부착강도가 높고, 섬유의 혼입개체수가 많아 콘크리트의 최대휨강도는 높았지만, 균열발생 이후 섬유가 매트릭스로부터 인발되지 않고 섬유가 파괴되는 것에 의해 응력의 저하가 급격하게 발생하지만, 후크형 강섬유보강 콘크리트는 균열발생 이후 섬유가 인발되면서 응력의 저하가 완만하게 발생하였다. 폴리아미드 섬유보강 콘크리트는 균열발생이후 섬유의 연신률에 의해 응력이 급격하게 저하하는 구간이 발생하였으며, 섬유와 매트릭스의 부착에 의해 재상승하였다가 섬유가 끊어지면서 파괴되었다. 섬유와 매트릭스의 인발특성은 섬유보강 콘크리트의 휨강도 및 변형 능력에 큰 영향을 미치는 것으로 판단된다.

Investigation of the Effect of Organoclay Additives on Mechanical Properties of PF resin and MPB-OSL using Creep Behavior Analysis and IB Test

  • Kim, Yong-Sik;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권5호
    • /
    • pp.381-389
    • /
    • 2011
  • The effect of organoclays on the mechanical properties of cured phenol formaldehyde resin and oriented strand lumber made from Mountain Pine Beetle killed pine strands was analyzed. Three organoclays were used: a natural montmorillonite, hydrophobic organically modified 10 A, and hydrophilic organically modified 30 B. The oriented strand lumber samples were less creep deformation as well as improved internal bonding strength by adding organoclays in the order of 10 A 2% > MMT 2% > 30 B 2% > control. Furthermore, time-temperature superposition (TTS) analysis was proved to be able to predict the long-term creep behavior of MPB-OSL samples.

플립칩 본딩용 비전도성 접착제의 속경화거동 평가기법 (Evaluation Method for Snap Cure Behavior of Non-conductive Paste for Flip Chip Bonding)

  • 민경은;이준식;이소정;이성;김준기
    • Journal of Welding and Joining
    • /
    • 제33권5호
    • /
    • pp.41-46
    • /
    • 2015
  • The snap cure NCP(non-conducive paste) adhesive material is essentially required for the high productivity flip chip bonding process. In this study, the accessibility of DEA(dielectric analysis) method for the evaluation of snap cure behavior was investigated with comparison to the isothermal DSC(differential scanning calorimetry) method. NCP adhesive was mainly formulated with epoxy resin and imidazole curing agent. Even though there were some noise in the dielectric loss factor curve measured by DEA, the cure start and completion points could be specified clearly through the data processing of cumulation and deviation method. Degree of cure by DEA method which was measured from the variation of the dielectric loss factor of adhesive material was corresponded to about 80% of the degree of cure by DSC method which was measured from the heat of curing reaction. Because the adhesive joint cured to the degree of 80% in the view point of chemical reaction reveals the sufficient mechanical strength, DEA method is expected to be used effectively in the estimation of the high speed curing behavior of snap cure type NCP adhesive material for flip chip bonding.

이중복합봉 정수압 압출시 접합면 거동에 관한 연구 (A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion)

  • 박훈재;나경환;조남선;이용신
    • 소성∙가공
    • /
    • 제7권1호
    • /
    • pp.66-71
    • /
    • 1998
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the bonding conditions as well as the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding the normal pressure and the contact surface expansion are selected as process parameters governing the bonding conditions, in this study the critical normal pressure required for the local extrusion-the protrusion of virgin surfaces by the surface expansion at the interface-is obtained using a slip line method and is then used as a criteron for the bonding. A rigid plastic finite element method is used to analyze the steady state extrusion process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-cent to interface surface. The contact surface area ration and the normal pressure along the interface are calculated and compared to the critical normal pressure to check bonding. It is found that the model predictions are generally in good agreement with the experimental observations. The compar-isons of the extrusion pressure and interface profile by the finite element with those by experi-ments are also given.

  • PDF

복합재료내의 계면 접착 특성에 따른 지능형 구조물의 진동제어에 관한 연구 (Studies on the Vibration Controllability of Smart Structure Depending on the Interfacial Adhesion Properties of Composite Materials)

  • 한상보;박종만;차진훈
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1093-1102
    • /
    • 1998
  • The success of controllability of smart structures depends on the quality of the bonding along the interface between the main structure and the attached sensing and acuating elements. Generally, the analysis procedures neglect the effect of the interfacial bond layer or assume that this bond layer behaves like viscoelastic material. Three different bond layers. two modified epoxy adhesives, and one isocyanate adhesive were prepared for their toughness and moduli. Bond layer of the chosen adhesive provides an almost perfect bonding condition between the composite structure and the PZT while bended significantly like arrow-shape. The perfect bonding condition is tested by considering various material properties of the bond layers. and based on this perfect bonding condition, the effects of the interfacial bond layer on the dynamic behavior and controllability of the test structure is experimentally studied. Once the perfect bonding condition is achieved. dynamic effects of the bond layer itself on the dynamic characteristics of the main structure is negligible. but the contribution of the attached PZT elements on the stiffness of the multi-layered structure becomes significant when the thickness of the bond layer increased.

  • PDF

Electronic Structure and Bonding in the Ternary Silicide YNiSi3

  • Sung, Gi-Hong;Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권3호
    • /
    • pp.325-333
    • /
    • 2003
  • An analysis of the electronic structure and bonding in the ternary silicide YNiSi₃is made, using extended Huckel tight-binding calculations. The YNiSi₃structure consists of Ni-capped Si₂dimer layers and Si zigzag chains. Significant bonding interactions are present between the silicon atoms in the structure. The oxidation state formalism of $(Y^{3+})(Ni^0)(Si^3)^{3-}$ for YNiSi₃constitutes a good starting point to describe its electronic structure. Si atoms receive electrons from the most electropositive Y in YNiSi₃, and Ni 3d and Si 3p states dominate below the Fermi level. There is an interesting electron balance between the two Si and Ni sublattices. Since the ${\pi}^*$ orbitals in the Si chain and the Ni d and s block levels are almost completely occupied, the charge balance for YNiSi₃can be rewritten as $(Y^{3+})(Ni^{2-})(Si^{2-})(Si-Si)^+$, making the Si₂layers oxidized. These results suggest that the Si zigzag chain contains single bonds and the Si₂double layer possesses single bonds within a dimer with a partial double bond character. Strong Si-Si and Ni-Si bonding interactions are important for giving stability to the structure, while essentially no metal-metal bonding exists at all. The 2D metallic behavior of this compound is due to the Si-Si interaction leading to dispersion of the several Si₂π bands crossing the Fermi level in the plane perpendicular to the crystallographic b axis.

원통형 셀 구조를 갖는 한방향 CFRP 적층 복합재료의 정적인장파괴거동 (Mechanical Properties and Fracture Behavior of Cylindrical Shell Type for Unidirectional CFRP Composite Material under Tension Load)

  • 오환섭
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.273-278
    • /
    • 1998
  • In this paper, basic micro-mechanical properties of unidirectional CFRP composite shell such as bonding strength, fiber volume fraction and void fraction are measured and tensile strength test is performed with a fixture. And then fracture surfaces are observed by SEM. In case of basic micro-mechanical properties, bonding strength is reduce with decreasing of radius of each ply in a shell for the effect of residual stress, fiber volume fraction is smaller than plate, and void fraction is vise versa. For these reason, tensile strength of shell is smaller than plate fabricated with same prepreg. For failure mode shell has many splitted part along its length, and it is assumed that this phenomenon is caused by the difference of bonding strength for residual stress.

  • PDF

이중복합봉 정수압 압출시 접합면 거동에 관한 연구 (A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion)

  • 박훈재;나경환;조남선;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.140-143
    • /
    • 1997
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding, the normal pressure and the contact surface expansion are selected as process parameters governing the bonding condition. The critical pressure required for the bonding at the interface is obtained by solving a "local extrusion" using a slip line meyhod. A viscoplastic finite element method is used to analyze the steady state extrusion process. The boundary profile of bi-metal rod is predicted by tracking a particle path adjacent to interface surface. The variations of contact surface area and the normal pressure along the interface profile are predicted and compared to those by experiments.

  • PDF