• Title/Summary/Keyword: bond-strength, deformed bar

Search Result 35, Processing Time 0.022 seconds

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

Bond strength of deformed steel bars embedded in geopolymer concrete

  • Barzan Omar, Mawlood;Ahmed Heidayet, Mohammad;Dillshad Khidhir, Bzeni
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.331-339
    • /
    • 2022
  • Geopolymer concrete (GPC) is one of the best substitute materials for conventional concrete in construction. The conventional concrete provided by Portland cement has a detrimental influence on the environment during its production. In this study, the bond strength, which is an important structural property, of deformed steel bars with slag-based GPC was measured. In accordance with the ASTM C234 procedure, bond strength was measured on 18 specimens of slag-based GPC with three sizes of steel bars and different embedded lengths. Two groups of GPC specimens with different compressive strengths, which were cured under ambient conditions, were tested. The results indicated that the bar diameter has a great effect on the bond strength, and the bond strength behavior of the slag-based GPC is comparable with that of conventional concrete. The ACI-318 Code for the bond strength of ordinary Portland cement concrete can be used conservatively to determine the bond strength of the GPC reinforced with deformed steel bars.

An Experimental Study on the Bond Characteristics of Glass Fiber Reinforced Polymer Rebar (GFRP Rebar의 부착성능에 관한 실험적 연구)

  • Park Ji-Sun;You Young-Chan;Park Young-Hwan;Choi Ki-Sun;Kim Hyeong-Yeol;Kim Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.124-127
    • /
    • 2004
  • This study is to investigate the bond characteristics of glass fiber reinforced polymer(GFRP) reinforcing bars in concrete by pullout test experimentally. Three different types of GFRP bars with different surface deformations were considered in this study. Also, standard deformed steel reinforcing bar with or without epoxy-coating were included for the comparisons of bond strength. All test procedures including specimens preparation, test apparatus and measuring devices were made according to the recommendation of CSA(Canadian Standards Association) Standard S806-02. From the test results, it was found that small surface indentations contributed to increase the bond strength of GFRP bar significantly. Based on the limited test results till now, the bond strength of GFRP bar with sand-coated deformation commercially available in foreign market is around $80\%$ of that of steel deformed bars.

  • PDF

Bond Characteristic Between Lightweight Concrete and GFRP Bar (경량콘크리트와 GFRP 보강근의 부착 특성)

  • Son, Byung-Lak;Kim, Myung-Sik;Kim, Chung-Ho;Jang, Heui-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.112-121
    • /
    • 2013
  • FRP reinforced lightweight concrete structures can offer corrosion resistance and weight reduction effect simultaneously, so practical use of the structures may be expected afterwards. But to make concrete structures using lightweight concrete and FRP bar, that can resist external forces without internal slip of the FRP bar, it is very important to understand bond characteristic between lightweight concrete and FRP bar. During that time, a lot of studies for bond behaviors of FRP bar in normal concrete were conducted, but studies for bond behavior of FRP bar in lightweight concrete are very limited to date. So, bond characteristic between lightweight concrete and helically deformed GFRP bar was investigated in this study. Three main parameters were considered in experimental investigation: type of rebar, concrete type, and compressive strength of lightweight concrete. As an experimental result, it could be known that bond strength of helically deformed GFRP bar in lightweight concrete was 0.49 times bond strength of steel reinforcement in normal concrete.

Study on the Development Design Criteria of High Relative Rib Area bars (높은 마디면적비 철근의 부착강도에 따른 정착설계 연구)

  • Park, Sung-Gyu;Hong, Geon-Ho;Choi, Oan-Chul;Hong, Gi-Suop
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.270-273
    • /
    • 2006
  • Bond between reinforcing bar and the surrounding concrete is made up of three components. There are chemical adesion, friction, and mechanical interaction between the rib of the bar and the surrounding concrete. bond of deformed bars depends primarily on the beraing of rib deformation anainst the surrounding concrete. The final objective of the study is to enhance structural stability, and workability thorough increasing the bond strength between deformed bar and surrounding concrete. The results of this study will be used to shorten bond and development length by $20{\sim}30$ percent and it will facilitate to use of high strength and high-relative rib area bars.

  • PDF

Bond strength of reinforcement in splices in beams

  • Turk, Kazim;Yildirim, M. Sukru
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.469-478
    • /
    • 2003
  • The primary aim of this study was to investigate the bond strength between reinforcement and concrete. Large sized nine beams, which were produced from concrete with approximately ${f_c}^{\prime}=30$ MPa, were tested. Each beam was designed to include two bars in tension, spliced at the center of the span. The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. In all experiments, the variable used was the reinforcing bar diameter. In the experiments, beam specimens were loaded in positive bending with the splice in a constant moment region. In consequence, as the bar diameter increased, bond strength and ductility reduced but, however, the stiffnesses of the beams (resistance to deflection) increased. Morever, a empirical equation was obtained to calculate the bond strength of reinforcement and this equation was compared with Orangun et al. (1977) and Esfahani and Rangan (1998). There was a good agreement between the values computed from the predictive equation and those computed from equations of Orangun et al. (1977) and Esfahani and Rangan (1998).

The Bond Characteristics of Deformed Bars in Recycled Coarse Aggregates Concrete (RCAC) (순환골재 콘크리트와 이형철근의 부착 특성)

  • Jeon, Su-Man;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.165-173
    • /
    • 2008
  • One of the most important requirements for reinforced concrete constructions is the bond behavior between concrete and reinforcement. For practical application, it is very important to study bond behavior of reinforcing bars in recycled aggregate concrete (RAC). Thirty six pull-out tests were carried out in order to investigate the bond behaviour between recycled coarse aggregate concrete (RCAC) and deformed bars. RCA replacement ratios (i.e., 0%, 30%, 60% and 100%) and positions of deformed bar (i.e., vertical and horizontal position) were considered as variables in this paper. Each specimen was in the form of a cube, with edges of 150 mm in length and for the pull-out tests, a deformed bar, 13 mm in diameter, was embedded in the center of each specimen. Based on the test results, the bond strength between the RCAC and deformed bars were influenced by both RCA replacement ratios and positions of deformed bars. It was found that under the equivalent mix proportion (i.e., the mix proportions are the same, except for different RCA replacement ratios), the bond strength between the RCAC and the ribbed bar has no obvious relation with the RCA replacement ratio, whereas the positions of deformed bars have a significant effect on the bond behavior between the RCAC and deformed bars. Under the condition of same RCA replacement ratio, the specimen of horizontal reinforcement at upper position (HU type) appear considerably low bond stress.

Local bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.449-466
    • /
    • 2015
  • This paper aims to study the local bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete (LWAC). The experimental variables of the local bond stress-slip tests include concrete strength (20, 40 and 60 MPa), deformed steel bar size (#4, #6 and #8) and coarse aggregate (normal weight aggregate, reservoir sludge lightweight aggregate and waterworks sludge lightweight aggregate). The test results show that the ultimate bond strength increased with the increase of concrete compressive strength. Moreover, the larger the rib height to the diameter ratio ($h/d_b$) of the deformed steel bars is, the greater the ultimate bond stress is. In addition, the suggestion value of the CEB-FIP Model Code to the LWAC specimen's ultimate bond stress is more conservative than that of the normal weight concrete.

Towards an Improved Understanding of Bond Behaviors

  • Choi, Oan Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.239-243
    • /
    • 2003
  • A reducing bearing angle theory for bond of ribbed reinforcing bars to concrete is proposed to simulate experimental observation. Analytical expressions to determine bond strength for splitting and pullout failure are derived, where the bearing angle is a key variable. As bearing angle is reduced, splitting strength decreases and shearing strength increases. The proposed reducing bearing angle theory is effective to simulate damage of the deformed bar-concrete interface and understand bond mechanism of ribbed reinforcing steel in concrete structures.

  • PDF

An Experimental Study for Bond Characteristics of Deformed Bar Embedded in Donut Type Biaxial Hollow Slab (도넛형 이방향 중공슬래브의 부착특성에 관한 실험적 연구)

  • Chung, Joo-Hong;Kang, Sung-Hoon;Lee, Seung-Chang;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • This study investigated the bond characteristics of embedded deformed steel bar in donut type biaxial hollow slabs. The donut type hollow sphere make concrete inner cover formed between steel bar and hollow sphere due to the hollow shape and arrangement. Generally, inner cover was thinner than outer cover, and some part of donut type biaxial hollow slab has smaller inner cover thickness than $2.5d_b$. It was affected to the bond condition of deformed bar. Furthermore, inner cover thickness changes along the longitudinal deformed bar due to hollow shape. Therefore, donut type hollow slab was divided 3 regions according to the hollow shape such as insufficient region, transition region, sufficient region. Pull-out test were performed to find out the effect of bond condition by the region. Main parameters are inner cover thickness, embedded length and bond location. Bond characteristics of donut type biaxial hollow slab were confirmed through comparison of bond stress-slip relationship, maximum bond strength and bond stress distribution of each regions. And the calculation method of bond strength of donut type biaxial hollow slab was suggested based on the test results.