• Title/Summary/Keyword: bond resistance

Search Result 401, Processing Time 0.026 seconds

Improvement of bond strength and durability of concrete incorporating high volumes of class F fly ash

  • Wu, Chung-Hao;Chen, Chien-Jung;Lin, Yu-Feng;Lin, Shu-Ken
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.367-375
    • /
    • 2021
  • This study experimentally investigated the improvement of bond strength and durability of concrete containing high volume fly ash. Concrete mixtures made with 0%, 25% and 60% replacement of cement with class F fly ash were prepared. Water-binder ratios ranged from 0.28 to 0.72. The compressive, flexural and pullout bond strength, the resistance to chloride-ion penetration, and the water permeability of concrete were measured and presented. Test results indicate that except for the concretes at early ages, the mechanical properties, bond strength, and the durability-related chloride-ion permeability and water permeability of concrete containing high volume (60% cement replacement) fly ash were obviously superior to the concrete without fly ash at later ages of beyond 56 days. The enhanced bond strength for the high volume fly-ash concrete either with or without steel confinement is a significant finding which might be valuable for the structural application.

Estimation of Pull-out force by using modified Direct Shear Apparatus (개설된 직접전단시험기(CNS)를 이용한 보강재의 인발력 추정)

  • 유병선;이학무;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.145-154
    • /
    • 2003
  • When a nail pulled out in dense, granular soil, the soil in the vicinity of the nail tends to dilate, but its dilatancy results in a normal stress concentration at the soil/nail interface, thereby increasing the pull-out resistance of the inclusion. It is thought to be occurring within the resistance zone where the soil mass is at stationary state and the reinforcement are held in position by the soil, due to the friction or bond. In this paper, A series of direct shear and interface tests were conducted by using so called‘Constant Normal Stiffness Test Apparatus’which was modified and improved from the conventional direct shear box test rig. Unlikely the normal shear box test, this enables to simulate the different constraint effects of surrounding soil during shear under the conditions of constant stress and volume, constant normal stiffness. The aim of the research programme is to get better understanding of pull-out bond mechanism, thus to explore the possibility of evaluating the pull-out bond capacity of soil/reinforcement at the preliminary design stage from the laboratory test.

  • PDF

A Study on the Behaviour Mechanism of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1240-1249
    • /
    • 2008
  • Jacket anchor was developed to increase the pullout resistance of general ground anchor in soft ground, and the mechanism of pullout resistance of jacket anchor was analyzed. Also, the ultimate bond stress of jacket anchor was estimated by ultimate resistance which is determined by field tests. Grout milk was injected into the jacket to make grout bulb of jacket anchor. The formation of grout bulb of jacket anchor increases the diameter of grout bulb, ground strength and confining pressure between anchor grout and soil. From the twelve field test results, it was observed that the pullout resistance of jacket anchor is 15.38~295.02%(average 83.53%) greater than that of general ground anchor, and plastic deformation of jacket anchor is 20.78~1,496.45%(average 288.78%) smaller than that of general ground anchor at the same load cycle. Especially, it was investigated that the increase of ultimate resistance over 200% and the reduction of plastic deformation over 600% was obtained in gravel layer. It means that the jacket anchor is superior to the general ground anchor in gravel layer. Finally, the ultimate bond stress was proposed to design jacket anchor.

  • PDF

A Case Study on the Effect of Soil Improvement on Anchor Bond Zone (지반개량에 의한 Anchor 정착부 개선효과 사례연구)

  • Kim, Tae-Seob;Song, Sang-Ho;Cho, Kyu-Wan;Lee, Jae-Dong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1008-1013
    • /
    • 2006
  • Ground anchor method is widely used in the large scale deep excavation of urban area to support a retained wall. Excavation using the ground anchor as a supporting system near a building have many difficulties due to the limitation of construction space. This method can not be applied to the site with the insufficient space from the retained wall to the boundary line. In this case, soil improvement at the anchor bond zone can be used to secure the frictional resistance of ground anchor within the boundary. Through this method, the bond length of anchor can be shortened considerably. This paper deals with the case study on the ground excavation adjacent to a building. The object field is Yongsan Park Tower Construction Site. In this site, the enlarged anchor with soil improvement was applied to solve the problem due to the limitation of construction space. According to the results of field test and monitoring, the anchor with soil improvement is very effective to secure the frictional resistance at the anchor bond zone.

  • PDF

Effect of the Sequence of Wax Addition, Wax Level and Type on Properties of Isocyanate-Bonded Particleboard (왁스첨가(添加) 순서(順序), 첨가량(添加量), 종류(種類)가 Isocyanate 접착(接着) PB의 성질(性質)에 미치는 영향(影響))

  • Kwon, Jin-Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.70-76
    • /
    • 1995
  • Research was conducted at the Wood Materials and Engineering Laboratory, Washington State University, Pullman, WA to evaluate the effects of the sequence of wax addition, wax level, and wax type on mechanical properties and water resistance performance of isocyanate-bonded particleboard. Mechanical properties and water resistance performance were not influenced significantly by the sequence of wax addition. Internal bond and wet modulus of rupture in bending strength were decreased significantly by increasing the wax emulsion level, but dry modulus of rupture and modulus of elasticity in bending strength were not decreased significantly by increasing the wax emulsion level. Dry internal bond, dry and wet moduli of rupture, and modulus of elasticity were not decreased by increasing the solid wax level except for wet internal bond. The addition of 1.0 and 1.5% wax level did not produce any significant additional water resistance effect when compared to the addition of 0.5% wax level. Internal bond values of boards with solid wax addition showed significantly better results than boards with just a wax emulsion added. Modulus of rupture, modulus of elasticity, and water resistance performance did not show significant difference between solid wax and wax emulsion.

  • PDF

Evaluation of Corrosion Resistance of Ti-Zr-Nb-Pd Based Alloys for Biomedical applications by electron Theory (전자론에 의한 생체용 Ti-Zr-Nb-Pd계 합금의 내식성 평가)

  • Jung, Jong-Hyun;Sun, Gum-Ju
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • In order to understand alloying effects on the corrosion resistance of Ti-(10$\sim$20)%Zr-(2$\sim$8%)Nb-0.2%Pd alloys, Polarization curves were measured at 5%HCI solution. The results were interpreted in terms of two parameters obtained by the molecular orbital calculation ; one is the bond order($B_{\circ}$) and the other is the metal d-orbital level($M_{d}$). $B_{\circ}$ is a measure of the strength of covalent bonds between titanium and alloying elements. $M_{d}$ is correlative with the electronegativity of elements. It was found that increasing of Zr and Nb with higher $B_{\circ}$ values showed a lower critical anodic current density in the polarization curve and hence higher corrosion resistance. On the other hand, increasing of Zr and Nb with higher $M_{d}$ values showed a higher corrosion resistance.

  • PDF

Design Parameters of Confinement on Bond Strength of Reinforcing Steel to Concrete (콘크리트와 철근의 부착강도에 대한 횡구속 설계변수)

  • 김상준;이재열;이웅세;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.653-658
    • /
    • 1999
  • Bond between reinforcing bars and the surrounding concrete is supposed to safely transfer load in the design process of reinforced concrete structures. Bond failure of reinforcing bars generally take place by splitting of concrete cover as bond force between concrete and reinforcing bars exceeds the resistance by the confinement of the concrete cover and transverse reinforcement. Confinement, concrete cover and transverse reinforcement, on bond are the key factor of current provision to determine development length of reinforcing bars to concrete. In this study, previous available data are analyzed with respect to the current provisions for development and splice of reinforcement. From this study, the new provision for the design are proposed, which will be efficient and effective with some specific limit value.

  • PDF

Experimental Evaluation of Bearing and Bond Strengths in Compression Splices (철근 압축이음에서 지압강도와 부착강도의 실험적 평가)

  • Chun, Sung-Chul;Lee, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • Compression splices are required for all compression members in almost all of the floors in high-rise buildings. Therefore, a clear understanding of the behavior of compression splices can provide a rational design of compression splices. Tests of compression splices with bearing only and bond only cases were conducted to investigate the component resistance characteristics of compression splices. Test results showed that the circumferential tensile stresses induced by bearing and bond overlapped at the end of the splice length deterred bond and bearing splices from developing target splicing strength when both normal bond and bearing splices were used. In particular, the bearing strength was more significantly reduced than the bond strength since the bearing relied on the limited area near the end of the splice length. However, the strength of the normal splice was always higher than the strength of the bond only or the bearing only case. Consequently, the study results showed that splice strength in compression cannot be improved by means of removing bond or bearing. In addition, the bond strength in bond only splices was nearly same as the bond strength in tension splices and the strength increase of compression splice is attributed to end bearing only characteristic.