• Title/Summary/Keyword: bond resistance

Search Result 401, Processing Time 0.028 seconds

A Study on the Mechanical Properties and Residual Stresses of the Thermally Sprayed Alumina Ceramic Coating Layer (알루미나 세라믹(Alumina Ceramic) 코팅층의 기술적인 특성과 잔류응력의 해소에 관한 연구)

  • 김영식
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.88-97
    • /
    • 1996
  • The pupose of this study is to improve the mechanical properies and to evaluate the residual stresses of flame-sprayed Alumina ceramic coating layer. The first work in this study is to investigate the effects of strengthening heat treatments on the mechanical properties of coating layer. Strengthening heat treatments for sprayed specimens were carried out in vaccum furnace. The mechanical properties such as microhardness, thermal shock resistance, adhesive strength and erosion resistance were tested for the sprayed specimens after strengthening heat treatments. And it was clear that the mechanical properties of coating layer were much improved by strengthening heat treatments. The second work in this study is to evalute the residual stresses in coating lsyer by numerical analysis. FDM and FEM were used to analyze temperature distribution and residul stresses in coating layer. It was proved that are tensile stresses in coating layer and that residual stresses can be controlled by the appropriate selection of the spraying parameters such as preheat temperature, coating thickness and bond coat thickness.

  • PDF

Development of Highly Conductive and Corrosion-Resistant Cr-Diamond-like Carbon Films

  • Ko, Minjung;Jun, Yee Sle;Lee, Na Rae;Kang, Suhee;Moon, Kyoung Il;Lee, Caroline Sunyong
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.317-324
    • /
    • 2019
  • Cr-diamond-like carbon (Cr-DLC) films were deposited using a hybrid method involving both physical vapor deposition and plasma-enhanced chemical vapor deposition. DLC sputtering was carried out using argon and acetylene gases. With an increase in the DC power, the Cr content increased from 14.7 to 29.7 at%. The Cr-C bond appeared when the Cr content was 17.6 at% or more. At a Cr content of 17.6 at%, the films showed an electrical conductivity of > 363 S/cm. The current density was 9.12 × 10-2 ㎂/㎠, and the corrosion potential was 0.240 V. Therefore, a Cr content of 17.6 at% was found to be optimum for the deposition of the Cr-DLC thin films. The Cr-DLC thin films developed in this study showed high conductivity and corrosion resistance, and hence, are suitable for applications in separators.

Effect of Fe Content on Mechanical and Electrochemical Properties of Ti-Mo-Fe Alloys (Ti-Mo-Fe 합금의 Fe 함량에 따른 기계적 특성과 전기화학적 특성 비교·분석)

  • Ji-Won Kim;Jeong-Yeon Park;Min Gang;Ji-Hwan Park;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.145-152
    • /
    • 2023
  • β titanium alloys containing β stabilizing elements such as V, Nb, Ta, Mo and Fe are widely used etc, due to their excellent specific strength, corrosion resistance, fatigue strength and easy formability. New metastable β titanium alloys are developed containing low-cost elements (Mo and Fe) in this study. Fe element is a strong β-stabilizer which can affect the mechanical and electrochemical properties of Ti-5Mo-xFe (x = 1, 4 wt%) alloys. These properties were analyzed in connection with microstructure and phase distribution. Ti-5Mo-4Fe alloy showed higher compression yield stress and maximum stress than Ti-5Mo-1Fe alloy due to solid-solution hardening and grain refinement hardening effect. As Fe element increased, Fe oxide formation and reduction of ${\bar{Bo}}$ (bond order) value affect the decrease of corrosion resistance. Ti-5Mo-xFe alloys were more excellent than Ti-6Al-4V ELI alloy.

Development and Splice Lengths of FRP Bars with Splitting Failures (쪼갬파괴에 의한 FRP 보강근의 정착길이와 이음길이)

  • Chun, Sung-Chul;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.519-525
    • /
    • 2010
  • Data from beam-based bond tests for FRP bars in the literature were collected and regression analyses were conducted for the data of splitting failure. Average bond strengths obtained from splice tests were found to be lower and more affected by C/$d_b$ values than average bond strengths from anchorage tests, indicating needs of new design equation for the splice length of FRP bars based on the data of splice tests only. In addition, the variation of bond strengths was greater than that of tensile strengths of FRP bars and, therefore, a new safety factor should be involved for the design equation. Five percent fractile coefficients were used to develop the design equations based on the assumption that load and resistance factors for FRP reinforced concrete structures are same to the factors for steel reinforced concrete structures. The proposed design equations give economical and reliable lengths for development and splice of FRP bars. The proposed equation for splice provides shorter lengths than the ACI 440 equation in case of C/$d_b$ of 3.0 or greater. Because FRP bars are expected to be used in slabs and walls exposed to weather with thick cover and large spacing between bars, the proposed equation gives optimal splice lengths.

Effects of Hot Isostatic Pressing on Bond Strength and Elevated Temperature Characteristics of Plasma sprayed TBC (HIP처리가 플라즈마 용사된 열차폐 코팅층의 접착강도와 고온특성에 미치는 영향)

  • Park, Young-Kyu;Kim, Sung-Hwi;Kim, Doo-Soo;Lee, Young-Chan;Choi, Cheol;Jung, Jin-Sung;Kim, Gil-Moo;Kim, Jae-Chul
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.312-316
    • /
    • 2000
  • A study has been made to investigate the effects of hot isostatic pressing(HIP ping) on bond strength and elevated temperature characteristics of thermal barrier coating(TBC). The specimens were prepared by HIPping of TBC which is composed of the ceramic top coat(8wt%$Y_2$$O_3$-$ZrO_2$) and the metallic bond coat on the matrix of IN738LC superalloy. The results showed that the porosity and microcracks in the ceramic top coat of TBC were significantly decreased by HIP. As a result, the bond strength of the HIPped coating was increased above 48% compared to that of as-coated specimen and microstructure was homogenized. It was found that the thermal cycle resistance of HIPped coating was inferior to that of as-coated specimen. It was considered that this result was mainly caused by the reduction of internal defects in the top coat layer which could play a role in relaxing the thermal stress due to a large difference in thermal expansion between TBC and matrix.

  • PDF

Uplift Capacity for Bond Type Anchored Foundations in Rock Masses (부착형 암반앵커기초의 인발지지력 평가)

  • Kim, Dae-Hong;Lee, Yong-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.147-160
    • /
    • 2008
  • This paper presents the results of full-scale loading tests performed on 54 passive anchors and 4 group anchored footings grouted to various lengths at several sites in Korea. The test results, the failure mechanisms as well as uplift capacities of rock anchors depend mostly on rock type and quality, embedded fixed length, properties of the discontinuities, and the strength of rebar. Anchors in poor quality rocks generally fail along the grout/rock interfaces when their depths are very shallow (a fixed length of less than 1 m). However, even in such poor rocks, we can induce a more favorable mode of rock pull-up failure by increasing the fixed length of the anchors. On the other hand, anchors in good quality rocks show rock pull-up failures with high uplift resistance even when they are embedded at a shallow depth. Laboratory test results revealed that a form of progressive failure usually occurs starting near the upper surface of the grout, and then progresses downward. The ultimate tendon-grout bond strength was measured from $18{\sim}25%$ of unconfined compressive strength of grout. One of the important findings from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for a transmission tower foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

Field Investigation of Chloride Penetration and Evaluation of Corrosion Characteristics for Deicer (염화물 침투 현장조사 및 제설제에 따른 부식특성)

  • Yang, Eun-Ik;Kim, Myung-Yu;Park, Hae-Geun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.47-52
    • /
    • 2008
  • Deicer has been generally used for prevention of a road freezing in winter, and the usage amount is increasing every year. However, deicer may induce the decrease of bond strength, surface scaling, and environmental pollution. In this study, the field test was performed to investigate the deterioration of concrete road structures used for 17 years. And, the corrosion resistance characteristics were compared for the existing deicer and eco-friendly deicer. According to the field test results, the penetration depth of limit chloride amount was about 40mm, and the average concentration of chloride was $3.45kg/m^3$ at the surface of structures. On the contrary, the carbonation depth was slight. The penetration depth of eco-friendly deicer was less than the existing deicer, and the corrosion resistance of eco-friendly deicer was higher.

Durability of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 초속경 폴리머 시멘트 모르타르의 내구성)

  • 이윤수;주명기;연규석;정인수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.660-667
    • /
    • 2002
  • The effects of polymer-cement ratio and antifoamer content on the durability of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, regardless of the antifoamer content, the setting time of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to delay with increasing polymer-cement ratio. The water absorption and chloride ion penetration depth of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder

Electrochemical Behavior of Plasma Electrolytic Oxidized Films Formed in Solution Containing Mn, Mg and Si Ions

  • Lim, Sang-Gyu;Choe, Han Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.80-80
    • /
    • 2017
  • Titanium and its alloys that have a good biocompatibility, corrosion resistance, and mechanical properties such as hardness and wear resistance are widely used in dental and orthopedic implant applications. However, they do not form a chemical bond with bone tissue. Plasma electrolytic oxidation (PEO) that combines the high voltage spark and electro-chemical oxidation is a novel method to form ceramic coatings on light metals such as tita-nium and its alloys. This is an excellent re-producibility and economical, because the size and shape control of the nano-structure is relatively easy. Silicon (Si), manganese (Mn), and magne-sium (Mg) have a useful to bone. Particularly, Si has been found to be essential for normal bone, cartilage growth, and development. Mn influences regulation of bone remodeling be-cause its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. Pre-studies have shown that Mg plays very im-portant roles in essential for normal growth and metabolism of skeletal tissue in verte-brates and can be detected as minor constitu-ents in teeth and bone. In this study, Electrochemical behavior of plasma electrolytic oxidized films formed in solution containing Mn, Mg and Si ions were researched using various experimental in-struments. A series of Si-Mn-Mg coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 5 and 10%. The potentiodynamic polarization and AC impedance tests for corrosion behav-iors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV. Also, AC impedance was performed at frequencies anging from 10MHz to 100kHz for corrosion resistance.

  • PDF

Manufacturing of High Water-Resistant Particleboard by Combining Use of Urea Resin and EMDI Resin (요소수지와 EMDI수지의 복합이용에 의한 고내수정 파티클보드의 제조)

  • Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.97-105
    • /
    • 1998
  • This study examined the combined using effects of urea-formaldehyde (UF) resin and emulsifiable methylene diphyenyl diisocyanate (EMDI) resin to overcome performance limit of three-layer particleboards commonly made by UF resin. Two adhesive adding methods were applied with three types of resin combination system to each layer of particleboards. The one was simultaneously spreading method with emulsified compound resin (UF and EMDI) while the other was separately spreading method with unemulsified EMDI resin after UF resin spreading. The performance of particleboards bonded with 2% EMDI resin to the inner layers(IL) were similar to that of controls bonded with 8% UF resin. In the case of the emulsified compound resin application to the all layers of particleboards, there were marked reinforcing effects of EMDI resin, although a small amount of EMDI resin was mixed with UF resin. Especially bending MOR after 24 hours cold water-immersion and thickness swelling after 2 hours hot water-immersion of compound resin-bonded particleboards were remarkably different from those of pure UF resin-bonded particleboards. It was found that separately spreading method with unemulsified EMDI resin was more effective than simultaneously spreading method with emulsified compound resin to sustain the internal bond strength of particleboards after 24 hours cold water-immersion. In the resin combination systems to outer layers/inner layers of particleboards, water resistance and strength properties were superior in order of UF+EMDI/UF+EMDI > UF/UF+EMDI > UF/UF. And water resistance of particleboards was greatly dependent upon EMDI resin level in any adhesive adding method.

  • PDF