• Title/Summary/Keyword: bond model

Search Result 763, Processing Time 0.026 seconds

Improvement on the Speed-Response of DC Motor Using Bond Graph Modeling Method (본드그래프모델링 방식을 이용한 직류전동기의 속도응답개선에 관한 연구)

  • 신위재;하홍곤
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.4
    • /
    • pp.309-318
    • /
    • 1991
  • In this paper, the integrator used to reduce the error between the reference signal and response, and DC motor are constructed by bond graph. Then the model following servo controller which have the high adaptation with respect to inertia, disturbance and/or load variation in the speed control system of DC motor is designed by the bond graph, and then the usefullness of this modeling method is confirmed in operating analysis and design on controller.

  • PDF

A Modeling of Proportional Pressure Control Valve and its Control (비례전자 감압밸브의 모델링과 제어)

  • Yang, K.U.;Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.71-77
    • /
    • 2002
  • In this study, a dynamic model of proportional pressure control valve using the bond graph and a predictive controller are presented in the form of dynamic matrix control which is concerned with a design method of digital controller for the electro hydraulic servo system. The bond graph can be utilized for all types of systems which involve power and energy, and it is applied to a propotional pressure control valve in this study. Recently, many researchers suggested that better control performance could be obtained by means of the predictive controls with future reference input, future control output and future control error. The Predictive controller is very practical because the controller can be easily applicable to a personal computer or a microprocessor. This study investigates through numerical simulations that hydraulic system with the predictive controller shows very good control performances.

  • PDF

Bond and ductility: a theoretical study on the impact of construction details - part 2: structure-specific features

  • Zwicky, Daia
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.137-149
    • /
    • 2013
  • The first part of this two-part paper discussed some basic considerations on bond strength and its effect on strain localization and plastic deformation capacity of cracked structural concrete, and analytically evaluated the impacts of the hardening behavior of reinforcing steel and concrete quality on the basis of the Tension Chord Model. This second part assesses the impacts of the most frequently encountered construction details of existing concrete structures which may not satisfy current design code requirements: bar ribbing, bar spacing, and concrete cover thickness. It further evaluates the impacts of the additional structure-specific features bar diameter and crack spacing. It concludes with some considerations on the application of the findings in practice and an outlook on future research needs.

Modeling of fiber pullout behaviors of stiff fiber reinforced cementitious composites

  • Chang, Xu;Chen, Ya-Juan;Lin, Hai-Xiao;Zhang, Yong-Bin
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.171-178
    • /
    • 2012
  • This paper presents numerical studies of stiff fiber pullout behaviors of fiber reinforced cementitious composites based on a progressive damage model. The ongoing debonding process is simulated. Interfacial stress distribution for different load levels is analyzed. A parametric study, including bond strength and the homogeneity index on the pullout behaviors is carried out. The numerical results indicate that the bond stress decreases gradually from loaded end to embedded end along fiber-cement interface. The debonding initially starts from loaded end and propagates to embedded end as load increasing. The embedded length and bond strength affect the load-loaded end displacement curves significantly. The numerical results have a general agreement with the experimental investigation.

Theoretical model to determine bond loss in prestressed concrete with reinforcement corrosion

  • Ortega, Nestor F.;Moro, Juan M.;Meneses, Romina S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • This paper reviews the mechanical effects produced by reinforcement corrosion of prestressed concrete beams. Specifically, modifications in the bonding of the tendon to the concrete that reduce service life and load bearing capacity are studied. Experimental information gathered from previous works has been used for the theoretical analysis. Relationships between bond stress loss and reinforcement penetration in the concrete, and concrete external cracking were established. Also, it was analysed the influence that has the location of the area affected by corrosion on the loss magnitude of the initial prestress.

The Structural distortion by a Substituent : Monosubstituted Benzene Derivative cases

  • Mhin, Byung-Jin
    • The Journal of Natural Sciences
    • /
    • v.15 no.1
    • /
    • pp.47-56
    • /
    • 2005
  • The substituent dependence of geometric distortion through the two independent electronic substituent effects is analyzed for mono-substituted benzene derivatives of $C_{2v}$. Based on resonance structures, quantitative relationships expressing the resonance and field/inductive contribution terms in bond distortions are derived. The calculated field-effect parts of $C_{ipso}$_$C_{ortho}$ ring bonds increase and decrease compared to benzene for electropositive and electronegative substituents respectively. The nonbonded axial distance, $C_{ipso}$....$C_{para'}$ decreases for electronegative substituents and increases for electropositive substituents. As the electronegativity increases, the distance $C_{ortho}$....$C_{ortho'}$ increases. With the $\pi$-donors, $C_{meta}$....$C_{meta'}$ nonbonded distances are shorter compared to the ones of benzene, and for $\pi$-acceptors, the are longer. Our model based on valence bond approach predicts that the average bond length determined the area of ring, and the sum of the angles <$C_{ortho}$_$C_{ispo}$_$C_{ortho}$ and <$C_{meta}$_$C_{para}$_$C_{meta}$ determines the axial distance.

  • PDF

An Experimental Study on Bond Strength Progress of Fold Mortar Permanent Form of Manufacturing at Field (현장 가공이 가능한 모르터 영구거푸집의 부착강도 증진을 위한 실험적 연구)

  • 김우재;김성식;임남기;김영희;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.853-858
    • /
    • 2000
  • According to the results of this research, Production of Fold Mortar Permanent - Form was found to be possible by Mortar. Th FP-Form (Fold Permanent-Form) mortar had compress strength 580kgf/$\textrm{cm}^2$. FP-Form model was made by the result of the first research. There was no minute-crack on beam form and the outer surface of form was very smooth, and those qualities it were made possible hand-mad by experiment. This study is about bond strength progress of FP-Form that developed for the form work rationalization and systematization. The result of this study follows; (1) Fluidity and strength development of mortar which used for FP-Form are satisfied (2) After study on getting good bond strength progress, inside-uneven type presents the better suitableness, and wire netting V-type presents the better shear strength.

  • PDF

Genetic Programming Based Plant/Controller Simultaneous Optimization Methodology (Genetic Programming 기반 플랜트/제어기 동시 최적화 방법)

  • Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2069-2074
    • /
    • 2016
  • This paper presents a methodology based on evolutionary optimization for simultaneously optimizing design parameters of controller and components of plant. Genetic programming(GP) based bond graph model generation is adopted to open-ended search for the plant. Also GP is applied to represent the controller with a unified method. The formulations of simultaneous plant-controller design optimization problem and the description of solution techniques based on bond graph are derived. A feasible solutions for a plant/controller design using the simultaneous optimization methodology is illustrated.

Time Dependent Extension and Failure Analysis of Structural Adhesive Assemblies Under Static Load Conditions

  • Young, Patrick H.;Miller, Zachary K.;Gwasdacus, Jeffrey M.
    • Journal of Adhesion and Interface
    • /
    • v.21 no.1
    • /
    • pp.6-13
    • /
    • 2020
  • The objective of the current study is to characterize the long-term stability and efficacy of a structural adhesive assembly under static load. An apparatus was designed to be used in the Instron tensile test machine that would allow for real time modeling of the failure characteristics of an assembly utilizing a moisture- cure adhesive which was bonded to concrete. A regression model was developed that followed a linear - natural log function which was used to predict the expected life of the assembly. Evaluations at different curing times confirmed the structure was more robust with longer cure durations prior to loading. Finally, the results show that under the conditions the assembly was tested, there was only a small amount of inelastic creep and the regression models demonstrated the potential for a stable structure lasting several decades.

Comparing the Stability of Geometrically rigid Tricyclopropyl Carbinyl Cations by $^{19}$F NMR Spectroscopy

  • Shin, Jung-Hyu;Kim, Kyong-Tae;Shin, Hun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.144-145
    • /
    • 1987
  • The relative stability as function of geometry in the rigid tricyclopropylcarbinyl cations with varied bond angle (${\alpha}$) between the plane of cyclopropane ring and the bond connecting cyclopropane ring to cationic carbon was examined by $^{19}F$ nmr spectroscopy. 7-p-Fluorophenyltricyclo[2.2.2.$0^{2,6}$]octan-7-yl(4) and 8-p-fluorophenyltricyclo[3.2.2.$0^{2,7}$]nonan-8-yl cation (8) were generated from corresponding tertiary alcohols under stable ion conditions, and their $^{19}F$ chemical shifts were compared with those of model compounds such as 7-nortricyclyl cation (3) and tricyclo[3.3.1.$0^{2,7}$]octan-8-yl cation (7). Consequently, it is concluded that the varied orientation of bond angle (${\alpha}$) within in the bisected conformation does not affect degree of the charge delocalization into cyclopropane ring.