• Title/Summary/Keyword: bond model

Search Result 763, Processing Time 0.024 seconds

Molecular Dynamics Simulation of Liquid Alkanes. Ⅰ. Thermodynamics and Structures of Normal Alkanes : n-butane to n-heptadecane

  • 이송희;이홍;박형석;Jayendran C. Rasaiah
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.735-744
    • /
    • 1996
  • We present results of molecular dynamic (MD) simulations for the thermodynamic and structural properties of liquid n-alkanes, from n-butane to n-heptadecane, using three different models Ⅰ-Ⅲ. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. Model Ⅰ is the original Ryckaert and Bellemans' collapsed atomic model [Discuss. Faraday Soc. 1978, 66, 95] and model Ⅱ is the expanded collapsed model which includes C-C bond stretching and C-C-C bond angle bending potentials in addition to Lennard-Jones and torsional potentials of model Ⅰ. In model Ⅲ all the carbon and hydrogen atoms in the monomeric units are represented explicitly for the alkane molecules. Excellent agreement of the results of our MD simulations of model Ⅰ for n-butane with those of Edberg et al.[J. Chem. Phys. 1986, 84, 6933], who used a different algorithm confirms the validity of our algorithms for MD simulations of model Ⅱ for 14 liquid n-alkanes and of models Ⅰ and Ⅲ for liquid n-butane, n-decane, and n-heptadecane. The thermodynamic and structural properties of models Ⅰ and Ⅱ are very similar to each other and the thermodynamic properties of model Ⅲ for the three n-alkanes are not much different from those of models Ⅰ and Ⅱ. However, the structural properties of model Ⅲ are very different from those of models Ⅰ and Ⅱ as observed by comparing the radial distribution functions, the average end-to-end distances and the root-mean-squared radii of gyrations.

Effect of disulphide bond position on salt resistance and LPS-neutralizing activity of α-helical homo-dimeric model antimicrobial peptides

  • Nan, Yong-Hai;Shin, Song-Yub
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.747-752
    • /
    • 2011
  • To investigate the effects of disulphide bond position on the salt resistance and lipopolysaccharide (LPS)-neutralizing activity of ${\alpha}$-helical homo-dimeric antimicrobial peptides (AMPs), we synthesized an ${\alpha}$-helical model peptide ($K_6L_4W_1$) and its homo-dimeric peptides (di-$K_6L_4W_1$-N, di-$K_6L_4W_1$-M, and di-$K_6L_4W_1$-C) with a disulphide bond at the N-terminus, the central position, and the C-terminus of the molecules, respectively. Unlike $K_6L_4W_1$ and di-$K_6L_4W_1$-M, the antimicrobial activity of di-$K_6L_4W_1$-N and di-$K_6L_4W_1$-C was unaffected by 150 mM NaCl. Both di-$K_6L_4W_1$-N and di-$K_6L_4W_1$-C caused much greater inhibitory effects on nitric oxide (NO) release in LPS-induced mouse macrophage RAW 264.7 cells, compared to di-$K_6L_4W_1$-M. Taken together, our results indicate that the presence of a disulphide bond at the N- or C-terminus of the molecule, rather than at the central position, is more effective when designing salt-resistant ${\alpha}$-helical homo-dimeric AMPs with potent antimicrobial and LPS-neutralizing activities.

Information Flow Effect Between the Stock Market and Bond Market (주식시장과 채권시장간의 정보 이전효과)

  • Choi, Cha-Soon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.3
    • /
    • pp.67-75
    • /
    • 2020
  • This paper investigated the information spillover effect between stock market and bond market with the KOSPI daily index and MMF yield data. The overall analysis period is from May 2, 1997 to August 30, 2019. The empirical analysis was conducted by dividing the period from May 2, 1997 to December 30, 2008 before the global financial crisis, and from December 30, 2008 to August 30, 2019 after the global financial crisis, and the overall analysis period. The analysis shows that the EGARCH model considering asymmetric variability is suitable. The price spillover effect and volatility spillover effect existed in both directions between the stock market and the bond market, and the price transfer effect was greater in the period before the global financial crisis than in the period after the global financial crisis. Asymmetric volatility in information between stock and bond markets appears to exist in both markets.

Synergistic bond properties of new steel fibers with rounded-end from carbon nanotubes reinforced ultra-high performance concrete matrix

  • Nguyen Dinh Trung;Dinh Tran Ngoc Huy;Dmitry Olegovich Bokov;Maria Jade Catalan Opulencia;Fahad Alsaikhan;Irfan Ahmad;Guljakhan Karlibaeva
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.363-373
    • /
    • 2023
  • A novel type of steel fiber with a rounded-end shape is presented to improve the bonding behavior of fibers with Carbon Nanotubes (CNT)-reinforced Ultra-High Performance Concrete (UHPC) matrix. For this purpose, by performing a parametric study and using the nonlinear finite element method, the impact of geometric characteristics of the fiber end on its bonding behavior with UHPC has been studied. The cohesive zone model investigates the interface between the fibers and the cement matrix. The mechanical properties of the cohesive zone model are determined by calibrating the finite element results and the experimental fiber pull-out test. Also, the results are evaluated with the straight steel fibers outcomes. Using the novel presented fibers, the bond strength has significantly improved compared to the straight steel fibers. The new proposed fibers increase bond strength by 1.1 times for the same diameter of fibers. By creating fillet at the contact area between the rounded end and the fiber, bond strength is significantly improved, the maximum fiber capacity is reachable, and the pull-out occurs in the form of fracture and tearing of the fibers, which is the most desirable bonding mode for fibers. This also improves the energy absorbed by the fibers and is 4.4 times more than the corresponding straight fibers.

Development of an Analytic Algorithm to Simulate Bond-Slip Effect (부착슬립효과를 모사하기 위한 해석기법의 개발)

  • Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.711-719
    • /
    • 1994
  • This paper deals with the development of an efficient algorithm which can consider the bond-slip effect in numerical analysis of reinforced concrete structures. Unlike the classical bond-link or bond-zone element using double nodes, the proposed model is considering the bond-slip effect without taking double nodes by incorporation of the equivalent steel stiffness. Moreover after calculation of nodal displacements, the deformation of steel at each node can be found out through the back-substitution technique from first up to final steel element using a governing equation constructed based on the equilibrium at each node of steel and the compatibility condition between steel and concrete.

  • PDF

Synthesis, Spectral, Characterization, DFT and Biological Studies of New 3-[(3-Chlorophenyl)-hydrazono]-pentane-2,4-dione Metal Complexes

  • Sadeek, Sadeek A.;Zordok, Wael A.;El-Farargy, Ahmed F.;El-Desoky, Sameh I.
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.169-178
    • /
    • 2014
  • A new series of metal complexes of V(IV), Pd(II), Pt(IV), Ce(IV) and U(VI) with 3-[(3-chlorophenyl)-hydrazono]-pentane-2,4-dione (Cphpd) were synthesized and characterized by elemental analysis, molar conductivity, magnetic moment measurements, UV-vis, FT-IR and $^1H$ NMR as well as TG-DTG techniques. The data indicated that the Cphpd acts as a bidentate ligand through the hydrazono nitrogen and one keto oxygen. The kinetic parameters have been evaluated by using Coats Redfern (CR) and Horowitz-Metzeger (HM) methods. The thermodynamic data reflected the thermal stability for all complexes. The calculated bond length and the bond stretching force constant, F(U=O), values for $UO_2$ bond are $0.775{\AA}$ and $286.95Nm^{-1}$. The bond lengths, bond angles, dipole moment and the lowest energy model structure of the complexes have been determined with DFT calculations. The antimicrobial activity of the synthesized ligand and its complexes were screened.

Direct synthesis method of dynamic systems in terms of bond graphs (본드선도를 이용한 동적시스템의 직접 종합방법)

  • Park, Jeon-Soo;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.399-407
    • /
    • 1998
  • This paper deals with a method for finding the physical structure of dynamic systems which shows reasonable response to a given specifiation. The method uses only four basic models of bond graph prototypes which have been originally proposed by the authors as a general model for dynamic systems, and then makes its procedure highly physical in the sense that it can synthesize a dynamic system through the structural transformation directly on bond graph models without any mathematical manipulation. Also, it is shown that this method has further advantages in optimizing parameters for an existing system rather than developing design concepts for a new device, the latter being more suitable using the so-called analytical synthesis method introduced by Park and Redfield. One example serves to trace the outlines of the direct synthesis method proposed in this paper for dynamic systems in terms of bond graph prototypes.

The effects of different FRP/concrete bond-slip laws on the 3D nonlinear FE modeling of retrofitted RC beams - A sensitivity analysis

  • Lezgy-Nazargah, M.;Dezhangah, M.;Sepehrinia, M.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.347-360
    • /
    • 2018
  • The aim of this paper is to evaluate the accuracy and reliability of the available bond-slip laws which are being used for the numerical modeling of Fiber Reinforced Polymer (FRP)/concrete interfaces. For this purpose, a set of Reinforced Concrete (RC) beams retrofitted with external FRP were modeled using the 3D nonlinear Finite Element (FE) approach. All considered RC beams have been previously tested and the corresponding experimental data are available in the literature. The failure modes of these beams are concrete crushing, steel yielding and FRP debonding. Through comparison of the numerical and experimental results, the effectiveness of each FRP/concrete bond-slip model for the prediction of the structural behavior of externally retrofitted RC beams is assessed. The sensitivity of the numerical results against different modeling considerations of the concrete constitutive behavior and bond-slip laws has also been evaluated. The results show that the maximum allowable stress of FRP/concrete interface has an important role in the accurate prediction of the FRP debonding failure.

Determinants of Vietnam Government Bond Yield Volatility: A GARCH Approach

  • TRINH, Quoc Trung;NGUYEN, Anh Phong;NGUYEN, Hoang Anh;NGO, Phu Thanh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.7
    • /
    • pp.15-25
    • /
    • 2020
  • This empirical research aims to identify the relationship between fiscal and financial macroeconomic fundamentals and the volatility of government bonds' borrowing cost in an emerging country - Vietnam. The study covers the period from July 2006 to December 2019 and it is based on a sample of 1-year, 3-year, and 5-year government bonds, which represent short-term, medium-term and long-term sovereign bonds in Vietnam, respectively. The Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model and its derivatives such as EGARCH and TGARCH are applied on monthly dataset to examine and suggest a significant effect of fiscal and financial determinants of bond yield volatility. The findings of this study indicate that the variation of Vietnam government bond yields is in compliance with the theories of term structure of interest rate. The results also show that a proportion of the variation in the yields on Vietnam government bonds is attributed to the interest rate itself in the previous period, base rate, foreign interest rate, return of the stock market, fiscal deficit, public debt, and current account balance. Our results could be helpful in the macroeconomic policy formulation for policy-makers and in the investment practice for investors regarding the prediction of bond yield volatility.

Sensitivity analysis of flexural strength of RC beams influenced by reinforcement corrosion

  • Hosseini, Seyed A.;Shabakhty, Naser;Khankahdani, Fardin Azhdary
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.479-489
    • /
    • 2019
  • The corrosion of reinforcement leads to a gradual decay of structural strength and durability. Several models for crack occurrence prediction and crack width propagation are investigated in this paper. Analytical and experimental models were used to predict the bond strength in the period of corrosion propagation. The manner of flexural strength loss is calculated by application of these models for different scenarios. As a new approach, the variation of the concrete beam neutral axis height has been evaluated, which shows a reduction in the neutral axis height for the scenarios without loss of bond. Alternatively, an increase of the neutral axis height was observed for the scenarios including bond and concrete section loss. The statistical properties of the parameters influencing the strength have been deliberated associated with obtaining the time-dependent bending strength during corrosion propagation, using Monte Carlo (MC) random sampling method. Results showed that the ultimate strain in concrete decreases significantly as a consequence of the bond strength reduction during the corrosion process, when the section reaches to its final limit. Therefore, such sections are likely to show brittle behavior.