• Title/Summary/Keyword: bond mechanism

Search Result 459, Processing Time 0.024 seconds

An Experimental Study on the Bond Split Mechanism of High Strength Concrete (고강도 콘크리트의 부착할렬기구에 관한 실험적 연구)

  • 장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.129-136
    • /
    • 1999
  • For the prediction of concrete-steel bond ability in reinforced concrete, many countries establish specifications for the pullout test. But these methods hardly to consider many parameters such as strength, shape, diameter and location of steel, concrete restrict condition by loading plate, strength of concrete and cover depth etc, and it is difficult to solve concentration and disturbance of stress. The purpose of this study is to propose a New Ring Test method which can be rational quantity evaluations of bond splitting mechanism. For this purpose, pullout test was carried out to assess the effect of several variables on bond splitting properties between reinforcing bar and concrete. Key variables are concrete compressive strength, concrete cover, bar diameter and rib spacing. Failure mode was examined and maximum bond stress-slip relationships were presented to show the effect of above variables. As the result, it appropriately expressed general characteristics of bond splitting mechanism, and it proved capability for standard test method.

The bonding mechanism and bond strength of cold pressure welding (엡셋팅에 의한 냉간 압접의 결합 기구와 결합강도)

  • 한인철;김재도
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.31-38
    • /
    • 1990
  • The bonding mechanism and bond strength were investigated for the cold pressure welding of Al to Al, Cu to Cu and Al to Cu by upsetting. A phenomenon of bonding betweenthe metallic components has been observed by a scanning electron microscope and metallurgical microscope. A modified equation for bond strength with respect to the reduction of height shows reasonably a good agreement with the experimental data. When the values of the hardening factor and threshold deformation for the given materials could be determined, the theoretical bond strength can be calculated.

  • PDF

Failure Mechanism of Headed Reinforcement including Bond Failure (부착파괴를 고려한 Headed Reinforcement의 파괴메카니즘)

  • 박종욱;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.234-237
    • /
    • 2003
  • Previous researches about headed reinforcement have not been concerned about bond failure which is quite important is some cases. In this paper, failure mechanism including bond failure was presented in order to define the contribution of bond stress at the time failure occurs. Examined with design codes and test results, it is proved to be rational to consider the contribution of bond stress in determining the ultimate pull-out capacity of headed reinforcement. Direct adaptation of design code for anchor bolt without modification for the contribution of bond stress will lead to underestimate the capacity of headed reinforcement.

  • PDF

Sensitivity of Ozone Concentrations to Initial Concentrations Applying the Carbon Bond Mechanism IV

  • Lee, Hwa-Woon;Kim, Heon-Sook;Oh, Eun-Joo;Kim, Yeon-Hee
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1159-1165
    • /
    • 2003
  • The Carbon Bond Mechanism IV has been developed for use in urban- and regional-scale oxidant models. The photochemical mechanism, CBM4, contains extensive improvements to earlier carbon bond mechanisms in the chemical representations of aromatics, biogenic hydrocarbons, peroxyacetyl nitartes, and formaldehyde. Ozone is produced mainly by nitrogen oxides and hydrocarbon. By altering the initial concentrations of the mechanism, an analysis of the sensitivity of ozone concentrations to VOC/NO$\_$x/ ratios and VOC composition is conducted in this one-dimensional mechanism. Note that it is considered a chemical mechanism in order to understand the photochemical reactions within this mechanism. It analyzed the results of these simulations by applying a NO$\_$x/-sensitive and a VOC-sensitive regime. These sensitivity regimes are changed to match the relative contribution of VOC and NO$\_$x/ concentrations to ozone production in simulations of two sets.

Density Functional Study on the C-H Bond Cleavage of Aldimine by a Rhodium(I) Catalyst

  • Yoo, Kyung-Hwa;Jun, Chul-Ho;Choi, Cheol-Ho;Sim, Eun-Ji
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1920-1926
    • /
    • 2008
  • We investigated the C-H bond activation mechanism of aldimine by the [RhCl$(PPH_3)_3$] model catalyst using DFT B3LYP//SBKJC/6-31G*/6-31G on GAMESS. Due to their potential utility in organic synthesis, C-H bond activation is one of the most active research fields in organic and organometallic chemistry. C-H bond activation by a transition metal catalyst can be classified into two types of mechanisms: direct C-H bond cleavage by the metal catalyst or a multi-step mechanism via a tetrahedral transition state. There are three structural isomers of [RhCl$(PH_3)_2$] coordinated aldimine that differ in the position of chloride with respect to the molecular plane. By comparing activation energies of the overall reaction pathways that the three isomeric structures follow in each mechanism, we found that the C-H bond activation of aldimine by the [RhCl$(PH_3)_3$] catalyst occurs through the tetrahedral intermediate.

Bond mechanism effect on the flexural behavior of steel reinforced concrete composite members

  • Juang, Jia-Ling;Hsu, Hsieh-Lung
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.387-400
    • /
    • 2006
  • This paper discusses the composite mechanism and its effect upon the behavior of a steel reinforced concrete (SRC) member subjected to a flexural load. The relationship between member strength and deformation is established using the bond strength between the steel and reinforced concrete. An analytical model is proposed and used to incorporate the sectional strains and bond strength at the elastic and inelastic stages for moment-curvature relationship derivation. The results from the flexural load tests are used to validate the accuracy of the proposed model. Comparisons between the experimental information and the analytical results demonstrate close moment-curvature relevance, which justifies the applicability of the proposed method.

Effect of Bond Action of Longitudinal Bars on Shear Transfer Mechanism in RC Beams (RC 보에서의 전단저항기구와 주철근의 부착 작용과의 관계)

  • Kim Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.513-520
    • /
    • 2005
  • The uniform truss mechanism is widely accepted as a shear transfer mechanism in reinforced concrete members. However, the uniform truss action cannot be expected when the bond stress distribution is not constant along longitudinal bars. A test method in which only the truss action takes place is developed and conducted to investigate the truss actions under various bond contributions. Based on the experimental results and analysis, the following findings can be obtained: 1) The bond stress distribution depends on the axial compression force, the amount of shear reinforcement and loading conditions. 2) The analysis using the combined truss model consisting of uniform and fan-shape trusses can predict the experimental results

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Theoretical Determination of Transfer Length in Pretensioned Members Using Thick Cylinder Theory

  • Oh, Byung-Hwan;Kim, Eui-Sung
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.31-43
    • /
    • 2000
  • The extensive usage of pretensioned prestressed concrete component in modem construe- tion as structural members mandates precise understanding of its mechanism. Especially, an adequate transfer of prestressing force from steel tendons to concrete around the end regions of the member is a critical issue. Due to the importance of the topic, several investigators have formulated equations modeling the transfer bond length based on various bonding mechanism between steel and concrete. However, the existing models are still inadequate in predicting the bond development in pretensioned prestressed concrete members. Therefore, this study presents a model of transfer bond length based on rational theory that can simulate experimental results. The model is developed into solid mechanics based structural analysis computer program. The program is validated by comparing the analysis results with experimental results of bond stress distribution, concrete strain profiles, and transfer length in pretensioned prestressed concrete members. The proposed analytical procedure in this study can be utilized as a useful tool for realistic evaluation of transfer length in pretensioned prestressed concrete members.

  • PDF

Theoretical Study on the Reaction Mechanism of Azacyclopropenylidene with Epoxypropane: An Insertion Process

  • Tan, Xiaojun;Wang, Weihua;Li, Ping
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2717-2722
    • /
    • 2014
  • The reaction mechanism between azacyclopropenylidene and epoxypropane has been systematically investigated employing the second-order M${\o}$ller-Plesset perturbation theory (MP2) method to better understand the reactivity of azacyclopropenylidene with four-membered ring compound epoxypropane. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. It was found that for the first step of this reaction, azacyclopropenylidene can insert into epoxypropane at its C-O or C-C bond to form spiro intermediate IM. It is easier for the azacyclopropenylidene to insert into the C-O bond than the C-C bond. Through the ring-opened step at the C-C bond of azacyclopropenylidene fragment, IM can transfer to product P1, which is named as pathway (1). On the other hand, through the H-transferred step and subsequent ring-opened step at the C-N bond of azacyclopropenylidene fragment, IM can convert to product P2, which is named as pathway (2). From the thermodynamics viewpoint, the P2 characterized by an allene is the dominating product. From the kinetic viewpoint, the pathway (1) of formation to P1 is primary.