• Title/Summary/Keyword: bond material

Search Result 848, Processing Time 0.026 seconds

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.

Minimization of Porosity in Ceramic Coating on a Hydraulic Cylinder (유압실린더 세라믹코팅 기공률 최소화 방안)

  • Jung, Youngho;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.6 no.4
    • /
    • pp.63-71
    • /
    • 2010
  • The best way to prevent the corrosion of piston rod is a selection of quality of the material and method of construction which minimize the porosity. The high velocity oxy fuel(HVOF) method, which generates lower porosity than existing plasma spray, was applied to ceramic laminated bond layer. Porosity percentage fell to bellow 2%, lower than that of plasma spray at 7%. Coating material of ceramic-coated main layer was selected as the $Cr_2O_3$ affiliation material, which is more dense than $Al_2O_3$ affiliation. To fill up the pores formed after the coating process, we sealed the bond layer and main layer. Sealing process was performed twice, once after the coating and once after the grinding. Upon the anti-corrosion test on the sealed sample and on the non-sealed sample, it is confirmed that the sealed sample was not corroded for 1,000 hours while the non-sealed sample was corroded within 48 hours.

  • PDF

Numerical study on the influence of mesomechanical properties on macroscopic fracture of concrete

  • Zhu, W.C.;Tang, C.A.;Wang, S.Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.519-533
    • /
    • 2005
  • The numerical simulations on the influence of mesoscopic structures on the macroscopic strength and fracture characteristics are carried out based on that the concrete is assumed to be a three-phase composite composed of matrix (mortar), aggregate and bond between them by using a numerical code named MFPA. The finite element program is employed as the basic stress analysis tool when the elastic damage mechanics is used to describe the constitutive law of meso-level element and the maximum tensile strain criterion and Mohr-Coulomb criterion are utilized as damage threshold. It can be found from the numerical results that the bond between matrix and aggregate has a significant effect on the macroscopic mechanical performance of concrete.

Evaluation of Emergency Pothole Repair Materials using Polyurethane-Modified Asphalt Binder (폴리우레탄 개질 아스팔트 바인더를 사용한 포트홀 응급 보수재의 성능평가)

  • Kim, Yeong Min;Im, Jeong Hyuk;Hwang, Sung Do
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • PURPOSES : The objective of this study is to develop new pothole repair materials using polyurethane-modified asphalt binder, and to evaluate them relative to current pothole repair materials in order to improve the performance of repaired asphalt pavement. METHODS : In the laboratory, polyurethane-modified asphalt binder is developed, and then asphalt binder is added to produce pothole repair materials. In order to evaluate the properties of this new pothole repair material, both an indirect tension strength test and a direct tension strength test are performed to measure the material strength and bond strength, respectively. Additionally, the basic material properties are evaluated using the asphalt cold mix manual. The strength characteristics based on curing times are evaluated using a total of 7 types of materials (3 types of current materials, 2 types of new materials, and 2 types of moisture conditioned new materials). The indirect tension strength tests are conducted at 1, 2, 4, 8, 16, and 32 days of curing time. The bond strength between current HMA(Hot Mix Asphalt) and the new materials is evaluated by the direct tension strength test. RESULTS AND CONCLUSIONS : Overall, the new materials show better properties than current materials. Based on the test results, the new materials demonstrate less susceptibility to moisture, faster curing times, and an improved bond strength between HMA and the new materials. Therefore, the use of the new materials reported in this study may lead to enhanced performance of repairs made to asphalt pavement potholes.

Push-out bond strength and intratubular biomineralization of a hydraulic root-end filling material premixed with dimethyl sulfoxide as a vehicle

  • Ju-Ha Park;Hee-Jin Kim;Kwang-Won Lee;Mi-Kyung Yu;Kyung-San Min
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.8.1-8.8
    • /
    • 2023
  • Objectives: This study was designed to evaluate the parameters of bonding performance to root dentin, including push-out bond strength and dentinal tubular biomineralization, of a hydraulic bioceramic root-end filling material premixed with dimethyl sulfoxide (Endocem MTA Premixed) in comparison to a conventional powder-liquid-type cement (ProRoot MTA). Materials and Methods: The root canal of a single-rooted premolar was filled with either ProRoot MTA or Endocem MTA Premixed (n = 15). A slice of dentin was obtained from each root. Using the sliced specimen, the push-out bond strength was measured, and the failure pattern was observed under a stereomicroscope. The apical segment was divided into halves; the split surface was observed under a scanning electron microscope, and intratubular biomineralization was examined by observing the precipitates formed in the dentinal tubule. Then, the chemical characteristics of the precipitates were evaluated with energy-dispersive X-ray spectroscopic (EDS) analysis. The data were analyzed using the Student's t-test followed by the Mann-Whitney U test (p < 0.05). Results: No significant difference was found between the 2 tested groups in push-out bond strength, and cohesive failure was the predominant failure type. In both groups, flake-shaped precipitates were observed along dentinal tubules. The EDS analysis indicated that the mass percentage of calcium and phosphorus in the precipitate was similar to that found in hydroxyapatite. Conclusions: Regarding bonding to root dentin, Endocem MTA Premixed may have potential for use as an acceptable root-end filling material.

Comparison of Shear Bond Strength in Novel Calcium Silicate-Based Materials to Composite Resin

  • Wonkyu Shin;Hyuntae Kim;Ji-Soo Song;Teo Jeon Shin;Young-Jae Kim;Jung-Wook Kim;Ki-Taeg Jang;Hong-Keun Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.4
    • /
    • pp.443-451
    • /
    • 2023
  • The purpose of this study was to evaluate whether the newly introduced calcium silicate-based materials with fast-setting properties could be appropriately used as basement materials in indirect pulp treatment (IPT). This was performed by quantifying the durability of adhesion between the material and composite resin, measured by the shear bond strength (SBS). Five calcium silicate-based materials, TheraCal LC® (TLC), TheraCal PT® (TPT), TheraBase® (TB), Well-RootTM PT (WPT), and Endocem® MTA (EMTA), as well as two glass ionomer-based materials, Fuji II and Fuji II LC, were included. Specimens containing these materials were manufactured and bonded to composite resin with a universal adhesive applied in self-etch mode. The SBS values and failure modes were recorded, and the mean SBSs of the materials were compared. Both TPT and TB exhibited SBS values that were similar to TLC, while both WPT and EMTA appeared to have statistically lower SBS values. Mixed failure was commonly observed in TLC and TPT, while all WPT and EMTA samples showed cohesive failure. In comparison with TLC and TPT, more samples with cohesive failure were observed in TB, implying that this material forms a stronger bond with composite resin. Together with the ability of TB to chemically bind to dentin due to its 10-methacryloyloxydecyl dihydrogen phosphate component, TB seems to be a promising material for IPT within the limitations of this in vitro study.

Evaluation of Mechanical Characteristic of Asphalt Pavement with usage of Trackless tack coat (부착방지 택코트 적용에 따른 아스팔트 포장 역학적 특성 평가)

  • Lim, Chisoo;Jeong, Hong-Gi;Jang, Daeseong;Park, Jin-Hoo;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.25-34
    • /
    • 2017
  • PURPOSES: The purpose of this paper is to evaluate interface performance while using various tack coat materials for asphalt overlay. METHODS : The evaluation was conducted with tracking test, permeability, and interface bond strength. Tracking test was conducted using an image processing technique, to investigate the susceptibility of the tack coat materials. BBS and pull-off test were conducted to evaluate bond strength. The permeability test was conducted to evaluate the effect of tack coat materials. RESULTS : Results reveal that the trackless tack coat material demonstrates less tracking compared to other materials. Moreover, both BBS and pull-off tests can effectively evaluate the bond strength at the interface. RSC-4 was measured less bond strength. Moreover, tack coat prevents water penetration through the surface and aids the extension of the surface life of asphalt pavement. CONCLUSIONS : Trackless tack coat demonstrated a high and consistent bond strength performance. The tack coat types demonstrate marginally different performance as function of curing times. Field applicability was tested based on visual observation. Therefore, these should be considered when trackless tack coat is slightly enhanced the pavement performance based on limited this study results. Finally, it is necessary to allow reasonable time for the tack coat to completely cure.

Effect of adhesive application method on repair bond strength of composite

  • Hee Kyeong Oh;Dong Hoon Shin
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.3
    • /
    • pp.32.1-32.10
    • /
    • 2021
  • Objectives: This study aimed to evaluate the effect of the application method of universal adhesives on the shear bond strength (SBS) of repaired composites, applied with different thicknesses. Materials and Methods: The 84 specimens (Filtek Z350 XT) were prepared, stored in distilled water for a week and thermocycled (5,000 cycles, 5℃ to 55℃). They were roughened using 400-grit sandpapers and etched with phosphoric acid. Then, specimens were equally divided into 2 groups; Single Bond Universal (SU) and Prime&Bond Universal (PB). Each group was subdivided into 3 subgroups according to application methods (n = 14); UC: 1 coat + uncuring, 1C: 1 coat + curing, 3C: 3 coats + curing. After storage of the repaired composite for 24 hours, specimens were subjected to the SBS test and the data were statistically analyzed by 2-way analysis of variance and independent t-tests. Specimens were examined with a stereomicroscope to analyze fracture mode and a scanning electron microscope to observe the interface. Results: Adhesive material was a significant factor (p = 0.001). Bond strengths with SU were higher than PB. The highest strength was obtained from the 1C group with SU. Bonding in multiple layers increased adhesive thicknesses, but there was no significant difference in SBS values (p = 0.255). Failure mode was predominantly cohesive in old composites. Conclusions: The application of an adequate bonding system plays an important role in repairing composite resin. SU showed higher SBS than PB and the additional layers increased the adhesive thickness without affecting SBS.

The change in mechanical properties of bond materials for micro-blades with the amount of lubricants (충진 윤활제의 첨가량에 따른 블레이드용 결합제의 기계적 특성)

  • Kim, Song-Hee
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.195-198
    • /
    • 2008
  • Graphite and $MoS_2$ were added respectively to the Cu/Sn bond materials of the same composition as a lubricant in order to find out the effect of lubricants on the mechanical properties and the increase in density of the sintered products for microblades. The addition of $MoS_2$ as a lubricant was more beneficial to strength, fracture toughness, and hardness as well as densification than graphite. $MoS_2$ seemed to be more effective in reducing the friction between the metallic powders and die wall during hot pressing process. Due to the better wettability of MoS2 with bond metal alloy, less amount of interfacial defects which is detrimental to mechanical properties use observed.

  • PDF

A Clinical Study on the Distribution and The Bond Failure of Etched(Maryland) Bridge: A Preliminary Report of 135 Cases (Maryland Bridge의 적용분포 및 결합실패에 관한 임상적 연구(I))

  • Yang, Jae-Ho
    • The Journal of the Korean dental association
    • /
    • v.25 no.6 s.217
    • /
    • pp.578-587
    • /
    • 1987
  • The purpose of this was to examine the distribution and the bond failure of the acidetched ceramometal retainer (Maryland Bridge). 126 subjects who treated by faculty and residents of Department of Prosthodontics, Seoul National University Hospital from Dec. 1982 to Dec. 1986 were selected for this study. From the foregoing study author obtained the following conclusions. 1. A total of 135 restorations were placed in the mouths of patients ranging in age from 11 to 70 years (Man 62, woman 64) 2. Most restorations were applied to replace anterior teeth. 3. It was found that of the total number of bridges constructed 59.3 percent were the three-unit type. 4. Replacing one tooth missing was the most frequent cases(74.1 percent). 5. Of the total number of cases, 10.4percent showed bond failure. 6. The bond failure, author suggest, be due to one or more of mis-fit of framework, occlusion, material in itself, faulty case selection and lack of technique.

  • PDF