• Title/Summary/Keyword: bond(concrete to reinforcement)

Search Result 292, Processing Time 0.021 seconds

Bond Slip Behavior of Cast-In-Place Concrete and FRP Plank Using Formwork and Tensile Reinforcement (인장 보강재 및 거푸집으로 활용한 FRP 판과 타설 콘크리트 사이의 부착에 관한 실험적 연구)

  • Yoo, Seung-Woon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.309-312
    • /
    • 2006
  • An experimental study for bond slip behavior of concrete and a FRP plank was used as the both formwork and the tensile reinforcement for a concrete structural member is described. For the FRP plank and the concrete to act as a composite structural member a satisfactory bond at the interface between the smooth surface of the FRP and the concrete must be developed. This study focuses on investigation of the bond slip behavior of sand coated interface between FRP and cast-in-place concrete experimentally.

  • PDF

Proposed Design Provisions for Bond and Development Length Considering Effects of Confinement (횡구속 영향을 고려한 부착 및 정착길이 설계 개선 안)

  • 최완철;김상준
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.61-68
    • /
    • 1999
  • Confinement is one of the major concepts for bond of reinforcing steel to concrete. Cover distance, and lateral reinforcement are the key factors for current provisions for development and splices of reinforcement. However, the current provisions still being complicated to calculate major variables need to be developed in the process of design. In this study, an experimental work was performed to examine the behavior of bond using beam end specimens. The test results and previous available data are analyzed to isolate the effects of confinement on bond strength. From this reevaluation, new provisions for development and splice of reinforcement are proposed. The provisions also propose some limits for confinement index. The new provisions will help engineers to decide easily the simple but conservative way for manual calculations or the exact approach for computerized design.

Bond strength modeling for corroded reinforcement in reinforced concrete

  • Wang, Xiaohui;Liu, Xila
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.863-878
    • /
    • 2004
  • Steel corrosion in reinforced concrete structures leads to concrete cover cracking, reduction of bond strength, and reduction of steel cross section. Among theses consequences mentioned, reduction of bond strength between reinforcement and concrete is of great importance to study the behaviour of RC members with corroded reinforcement. In this paper, firstly, an analytical model based on smeared cracking and average stress-strain relationship of concrete in tension is proposed to evaluate the maximum bursting pressure development in the cover concrete for noncorroded bar. Secondly, the internal pressure caused by the expansion of the corrosion products is evaluated by treating the cracked concrete as an orthotropic material. Finally, bond strength for corroded reinforcing bar is calculated and compared with test results.

Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

  • Kouril, M.;Pokorny, P.;Stoulil, J.
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2017
  • Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

An Experimental Study on the Bond Failure Behavior between Parent Concrete and CFM (콘크리트와 탄소섬유메쉬의 부착파괴 거동에 관한 실험적 연구)

  • 오재혁;성수용;한병찬;윤현도;서수연;김태용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.965-970
    • /
    • 2002
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of the enhanced bond of CFM. Therefore if bond strength is sufficient, it will be expected to enhance reinforcement effect. If insufficient, reinforcement effect can not be enhanced because of bond failure between concrete and CFM. This study is to investigate the bond strength of CFM to the concrete using direct pull-out test and tensile-shear test. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

  • PDF

Shear Strength of RC Beams with Exposed Reinforcement (부착 손실이 철근콘크리트 보의 전단강도에 미치는 영향)

  • Myung, Gun-Hak;Rhee, Chang-Shin;Kim, Dae-Joong;Mo, Gui-Suk;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.387-390
    • /
    • 2005
  • Reinforcement corrosion is the principal cause of deterioration of reinforced concrete. It is to be expected that loss of bond between concrete and tension reinforcement would lead to a reduction in shear strength of RC beams designed to fail in shear. This paper presents results of a FE analysis study to evaluate the shear strength of RC beams with exposed reinforcement represented the limiting condition of bond loss.

  • PDF

Bond strength of reinforcement in splices in beams

  • Turk, Kazim;Yildirim, M. Sukru
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.469-478
    • /
    • 2003
  • The primary aim of this study was to investigate the bond strength between reinforcement and concrete. Large sized nine beams, which were produced from concrete with approximately ${f_c}^{\prime}=30$ MPa, were tested. Each beam was designed to include two bars in tension, spliced at the center of the span. The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. In all experiments, the variable used was the reinforcing bar diameter. In the experiments, beam specimens were loaded in positive bending with the splice in a constant moment region. In consequence, as the bar diameter increased, bond strength and ductility reduced but, however, the stiffnesses of the beams (resistance to deflection) increased. Morever, a empirical equation was obtained to calculate the bond strength of reinforcement and this equation was compared with Orangun et al. (1977) and Esfahani and Rangan (1998). There was a good agreement between the values computed from the predictive equation and those computed from equations of Orangun et al. (1977) and Esfahani and Rangan (1998).

Bond of Deformed Bars to Concrete : Effects of Confinement and Strength of Concrete (철근 콘크리트 보-기둥 접합부의 부착거동에 대한 콘크리트 강도 및 보강철근의 효과)

  • 최기봉
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.2
    • /
    • pp.115-121
    • /
    • 1991
  • Slippage of beam longitudinal reinforcement at beam-column connections is an important cause of damage to reinforced concrete frames under static and dynamic loads, This paper summarizes the results of an experimen¬tal study on the effects of confinements and compressive strength of concrete on the local bond stress-slip cha¬racteristics of deformed bars. I t is concluded from experimental results that, as far as the bond splittmg cracks are restrained by the vertical column reinforcement, confinement of concrete by transverse reinforcement has insignigicant direct effect on the local bond behavior. The ultimate bond strength, however, Increases pro¬portionally with the square root of concrete compressive strength. An empirical model was developed for local bond st ressslip relationslip of deformed bars in confined concrete of different compressive strengths.

Evaluate Bond strength of high Relative Rib Area Bars Using Beam-end test specimens (보 단부 부착시험체에 의한 높은마디 철근의 부착성능)

  • Seo Dong Min;Yang Seung Youl;Hong Gi Suop;Choi Oan Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.112-115
    • /
    • 2004
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. However, the confinement force has a limitation. Thus, the only variable is the bearing angle corresponding to the change of bond force. Higher rib height bars possessing higher shearing resistance can maintain higher bearing angle and higher splitting resistance when bars are highly confined, and consequently higher bond strength, than lower rib higher bars. In this study, from the evaluate bond strength of high Relative Rib Area Bars Using beam-end test specimens are compared with the current provisions for development of reinforcement, and the improved design method of bond strength is proposed.

  • PDF

An Experiment on Bond Behaviours of Reinforcements Embedded in Geopolymer Concrete Using Direct Pull-out Test (직접 인발 시험을 이용한 지오폴리머 콘크리트의 부착 특성 실험)

  • Kim, Jee-Sang;Park, Jong-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.454-462
    • /
    • 2016
  • Geopolymer concrete is a new class of construction materials that has emerged as an alternative to ordinary Portland cement concrete to reduce the emission of $CO_2$ in the production of concrete. Many researches have been carried out on material developments of geopolymer concrete, however a few studies have been reported on the structural use of them. This paper presents an experiment on the bond behaviors of reinforcements embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strength levels of geopolymer concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16 and 25 mm, are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure the bond strength and slips between concrete and reinforcements. As the compressive strength levels of geopolymer concrete increase, the bond strength between geopolymer concrete and reinforcement increase. The bond strengths decrease as the diameters of reinforcements increase, which is similar in normal concrete. Also, an estimation equation for the basic development length of reinforcement embedded in geopolymer concrete is proposed based on the experimental results in this study.