• Title/Summary/Keyword: bolted glulam

Search Result 8, Processing Time 0.019 seconds

Shear Performance of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.661-671
    • /
    • 2015
  • To evaluate the shear performance of the textile glass fiber and the sheet glass fiber reinforced glulam bolted connections, a tension type shear test was conducted. The average yield shear strength of the bolted connection of reinforced glulam was increased by 12% ~ 31% compared to the non-reinforced glulam. It was confirmed that the shear performance of 5D end distance of the glass fiber reinforced glulam connection corresponds to that of 7D of the non-reinforced glulam connection proposed in building design requirements in various countries. Compared to the non-reinforced glulam, the average shear strength of textile glass fiber reinforced glulam was markedly increased. The non-reinforced glulam and the GFRP reinforced glulam underwent a momentary splitting fracture. However, the failure mode of textile glass fiber reinforced glulam showed a good ductility.

Bearing Strength of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.652-660
    • /
    • 2015
  • To study the bearing characteristics of glass fiber reinforced glulam for structural design, bearing strength tests were performed. Bearing loads were applied in the direction parallel to the grains, and the holes were prepared in such a way that the bolts would bear and support all the layers. The yield bearing strengths of the glass fiber reinforced glulam were found to be similar to those of the non-reinforced glulam, and were almost constant regardless of increases in bolt diameter. The ratio of the experimental yield bearing strength to the estimated bearing strength according to the suggested equation of the Korea Building Code and National Design Specification was 0.91~1.03. For the non-reinforced glulam and the sheet glass fiber reinforced plastic glulam, the maximum bearing load was measured according to the splitting fracture of specimens under bolt. The textile glass fiber reinforced glulam underwent only an embedding failure caused by the bearing load. The failure mode of reinforced glulam according to bearing load will influence the failure behavior of bolted connection, and estimating the shear yield strength of the bolted connection of the reinforced glulam is necessary, not only by using the bearing strength characteristics but also using the fracture toughness of the reinforced glulam.

Bending Creep of Glulam and Bolted Glulam under Changing Relative Humidity

  • PARK, Junchul;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.676-684
    • /
    • 2020
  • This study was carried out in order to evaluate the bending creep deflection of glulams and bolted glulams beam-to-beam connection with steel-gusset plates and bolts under changing relative humidity. The two types of glulam beams (130 mm in width, 175 mm in thickness, and 3000 mm in length) used in this study were made from domestic larch and composed of seven layers. The gussets were made of 8-mm-thick steel plates. Creep testing was conducted under constant loads in an uncontrolled environment. The test was carried out in a room that was well ventilated through a window. The creep test specimens were loaded for 33,000 hours. A bending creep test for the glulams was conducted through four-point loading. The applied stresses were 20% and 30% of the MOR in the static bending test for the glulam and bolted glulam, respectively. After 33,000 hours, the creep deflection of the glulam at a 20% stress level increased by 39% to 99%, while the creep deflection of the glulam at a 30% stress level increased by 27% to 67%, as compared with instantaneous elastic deflection. The relative creep increased during autumn and winter, and recovered during spring and summer. The relative creep of the bolted glulams was changed abruptly by loading up to 5,000 hours, but stabilized after 5,000 hours, and then gradually increased until 33,000 hours. The relative creep of the bolted glulam increased 2.11 times on average after 33,000 hours.

Shear Strength of Reinforced Glulam-bolt Connection by Glass Fiber Combination (유리섬유 조합에 따른 보강 집성재 볼트접합부의 전단강도 특성)

  • Kim, Keon-Ho;Song, Yo-Jin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • In order to know the shear performances of a bolted connection in reinforced glulam depending upon the combination of textile glass fiber, a tensile-type shear test was conducted. Textile glass fiber was used as a reinforcement, whose glass fiber arrangement was a plain weaving type or a diagonal cloth type. Reinforced glulam was made up of 5 plies and it was produced by inserting and laminating the plies between laminas depending upon a changed insert position and combination form of textile glass fiber. Tensile-type shear test specimens were a steel plate insert-type and joined at end-distance 7D with bolts whose diameter 12 or 16 mm. In textile glass fiber reinforced glulam, whose volume ratio was 1%, the yield shear strength of a 12 mm bolted connection increased by 10% when a test specimen had reinforced internal layers than when external layers were reinforced. As for textile glass fiber reinforced glulam, whose volume ratio was 2%, the yield shear strength of a 12 mm bolted connection increased significantly by about 22% compared to the bolted connection of non-reinforced glulam, and the yield shear strength of a 16 mm bolted connection was improved by about 20% compared to the bolted connection of non-reinforced glulam.

Estimate of Bolt Connection Strength of Reinforced Glulam using Glass Fiber (유리섬유 보강집성재 볼트 접합부 전단내력 예측)

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The yield shear strength of bolt connection in glass fiber reinforced glulam was predicted using a design-based equation, and was compared to the empirical yield shear strength. For the predicted equation, the mechanical properties of member (the elastic modulus, Poisson's ratio, shear modulus) was tested. The fracture toughness factor ($K_{ft}$) of glass fiber reinforced glulam was reflected to the revision of the design equation of bolted connection. The compressive strength properties to grain direction was influenced by annual ring angle and width of lamina. Compared with the revised yield shear strength of reinforced glulam, it was tended to be similar to the empirical yield shear strength on the diameter of bolt and the reinforcements. The revised yield shear strength from proposed formula of KBC was most appropriately matched in the bolt connection of the glass fiber reinforced glulam.

Strength Property of Double Shear Bolted-Connections of Larch (낙엽송 부재의 이중 전단 볼트 접합부 강도 성능)

  • Park, Chun-Young;Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.7-16
    • /
    • 2005
  • This study was carried out to evaluate the structural property of double shear bolted connections in Korean Larch. For the main member, sawn lumber and Glulam were used in which thickness of lumber is 39 mm, 89 mm, 139 mm, 189 mm and Glulam 80 mm, 140 mm, 170 mm. For the side member, sawn lumber and steel plate were used in which thickness of lumber is the same of the main member and steel plate is 6mm. And connections were jointed by M12, M16, M20 bolts which were usually used for wood constructions in Korea. Directions of loading to connections were perpendicular and parallel to grain of main and side member. First, through the dowel bearing test, the dowel bearing strength was evaluated and through the bolt bending tests, the bolt bending strength was evaluated. And then experiments for the connection were performed. Obtained results from experiments were compared with calculated values by EYM and analyzed. Strength of double shear bolted connections in Korean Larch was similar or higher than calculated value by EYM. Especially when the side member was made by the sawn lumber, it was similar to the calculated value. In failure mode, the mode was effected by the knot and the dry defect. In the thin main member, it was shown mode I and as the thickness of the main member was thicker, it was changed into mode III.

Shearing Strength Properties of Bolted, Drift-Pinned Joints of the Larix Glulam - Effects of Fastener Diameter, Slenderness and End-distance on Strength Properties - (낙엽송 집성재의 Bolt, Drift Pin 접합부의 전단강도 성능 평가 - 접합구 직경, 세장비, 끝면거리가 강도에 미치는 영향 -)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.69-78
    • /
    • 2008
  • Shearing strength test in tension type was investigated to determine the shear resistance of bolt and drift-pin connection of domestic larix glulam. The specimen was connected with bolt and drift-pin in the inserted plate type, and only bolt in the side plate type. The diameter of bolt and drift-pin used in the experiment are 12, 16 and 20 mm. The hole of bolt was drilled at the end-distance 5 d and 7 d. Tension load was loaded in the direction parallel to grain. The shear resistance was evaluated according to end-distance through this, the yield load was compared with the experimental yield load, using Larsen's formula. The prototype design strength is based on the yield load of end-distance 7 d and the reduction factor of end-distance 5 d was calculated. The results were as follows. 1. The average of maximum load of drift-pin connection was higher by 3~30% at the inserted type than at bolt connection with increasing diameter. In bolt connection, the average of maximum load of the side type was 1.54~2.07 times higher than that of the inserted type. In the same diameter, the average of maximum load of end-distance 7 d was higher by 8~44% than that of 5 d. 2. The bearing stress was 1.16~1.41 times higher at the inserted connection than at drift-pin connection, and 1.37~1.86 times higher at 7 d than at 5 d. Also, when the slenderness ratio was below 7.5 at drift-pin connection and below 6.0 at inserted connection, the lateral capacity was good. 3. The ratio of the experimental yield load and the predicted yield load calculated by Larsen's formula proposed by Larsen was 0.80~1.10 at inserted connection, and 0.75~1.46 at side connection. 4. When the inserted bolt connection was based on the yield load of end-distance 7 d, the reduction factor was 0.89 at 12 mm connection, 0.93 at 16 mm and 0.85 at 20 mm. The reduction factor was 0.89 at 12 mm the inserted drift-pin connection, 0.93 at 16 mm, 0.93 at 20 mm. The reduction factor was 0.79 at the side connection of the 12 mm bolt connection and 0.80 at 16 mm.

Lateral Strength of Double-Bolt Joints to the Larix Glulam according to Bolt Spacing (볼트 간격에 따른 낙엽송 집성재 이중 볼트접합부의 전단강도)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • The lateral strength test of bending type was done to investigate the lateral capacity of the double bolt connection of domestic larix glulam according to bolt spacing. In the shear specimen, which is bolted connection in the inserted plate type, the hole of bolt was made, changing the diameter of bolt (12 mm and 16 mm), the number of bolt (single bolt : control and double bolt), the direction of bolt row (in parallel to grain : Type-A and in perpendicular to grain : Type-B) and the bolt spacing (Type-A : 4 d and 7 d and Type-B : 3 d and 5 d). Lateral capacity and failure mode of bolt connection were compared according to conditions. In prototype design (KBCS, 2000), the reduction factor of the allowable shear resistance that the bolt spacing is reduced was calculated. The results were as follows. 1) Bearing stress per bolt in the single and double bolt connection of Type-A was directly proportional to bolt diameter and bolt spacing. Bearing stress of Type-B decreased as bolt diameter was increased, and decreased by 2~10% when bolt diameter was increased. 2) In the single bolt connection and the double bolt connection of Type-A, the splitted failure was formed in the edge direction. When the bolt spacing was 3 d in Type-B, bolt was yielded more in the part of tension than in the part of compression, and the splitted failure started at the bolt in the part of tension. In the 5 d spacing specimen, the bolt in the part of tension was yielded similarly to bolt in the part of compression, and the splitted failure started in the part of compression. 3) In the prototype design, the reduction factor was calculated by non-dimensionizing the yielding load in the standard of bolt spacing (Type A : 7 d and Type B : 5 d). In 12 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.87 and 0.55, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.55, respectively. In 16 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.96 and 0.76, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.77, respectively.