• Title/Summary/Keyword: bolted flange joint

Search Result 15, Processing Time 0.019 seconds

Research on the tightening strategy of bolted flange for contact stiffness of joint surface

  • Zuo, Weiliang;Liu, Zhifeng;Zhao, Yongsheng;Niu, Nana;Zheng, Mingpo
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • During bolted flange assembly, the contact stiffness of some areas of the joint surface may be low due to the elastic interaction. In order to improve the contact stiffness at the lowest position of bolted flange, the correlation model between the initial bolt pre-tightening force and the contact stiffness of bolted flange is established in this paper. According to the stress distribution model of a single bolt, an assumption of uniform local contact stiffness of bolted flange is made. Moreover, the joint surface is divided into the compressive stress region and the elastic interaction region. Based on the fractal contact theory, the relationship model of contact stiffness and contact force of the joint surface is proposed. Considering the elastic interaction coefficient method, the correlation model of the initial bolt pre-tightening force and the contact stiffness of bolted flange is established. This model can be employed to reverse determine the tightening strategy of the bolt group according to working conditions. As a result, this provides a new idea for the digital design of tightening strategy of bolt group for contact stiffness of bolted flange. The tightening strategy of the bolted flange is optimized by using the correlation model of initial bolt pre-tightening force and the contact stiffness of bolted flange. After optimization, the average contact stiffness of the joint surface increased by 5%, and the minimum contact stiffness increased by 6%.

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

The effect of bolt tightening methods and sequence on the performance of gasketed bolted flange joint assembly

  • Abid, Muhammad;Khan, Yasir Mehmood
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.843-852
    • /
    • 2013
  • This paper presents results of the effect of different bolt tightening sequences and methods on the performance of gasketed bolted flange joint using nonlinear finite element analysis. Bolt preload scatter due to elastic interactions, flange stress variation and bolt bending due to flange rotation and gasket contact stress variation is difficult to eliminate in torque control method i.e. tightening one bolt at a time. Although stretch control method (tightening more than one bolt at time) eradicates the bolt preload scatter, flange stress variation is relatively high. Flange joint's performance is compared to establish relative merits and demerits of both the methods and different bolt tightening sequences.

Three-Dimensional Contact Stress Analysis for Structural Design of Bolted Joint Assembly of Pressure Vessels in Nuclear Power Plants (원자력 발전소용 압력용기의 볼트 연결 조립부 구조설계를 위한 3차원 접촉 응력 해석)

  • Lee, Boo-Youn;Kim, Tae-Woan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.122-128
    • /
    • 1999
  • Bolted joint assembly for nuclear power plants consists of various components : cover plate, retainer plate, manway flange, gasket and stud bolts/nuts. To guarantee the soundness of the joint, it is important to prevent leakage through the gasket and reduce the stress concentration factor at the thread root. In this paper, Submodeling technique for the finite element method is proposed to accurately compute three dimensional contact stresses which govern the sealing performance and the maximum contact stresses at the threads root. For verification of global solutions used as boundary conditions of submodel solution, the stresses on the cover plate and the manway flange are measured by strain gages when internal pressure is applied to the bolted joint assembly. The numerical results are compared with the experimental results.

  • PDF

Vision-based technique for bolt-loosening detection in wind turbine tower

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Choi, Sang-Hoon;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.709-726
    • /
    • 2015
  • In this study, a novel vision-based bolt-loosening monitoring technique is proposed for bolted joints connecting tubular steel segments of the wind turbine tower (WTT) structure. Firstly, a bolt-loosening detection algorithm based on image processing techniques is developed. The algorithm consists of five steps: image acquisition, segmentation of each nut, line detection of each nut, nut angle estimation, and bolt-loosening detection. Secondly, experimental tests are conducted on a lab-scale bolted joint model under various bolt-loosening scenarios. The bolted joint model, which is consisted of a ring flange and 32 sets of bolt and nut, is used for simulating the real bolted joint connecting steel tower segments in the WTT. Finally, the feasibility of the proposed vision-based technique is evaluated by bolt-loosening monitoring in the lab-scale bolted joint model.

Experimental study on all-bolted joint in modularized prefabricated steel structure

  • Wu, Zhanjing;Tao, Zhong;Liu, Bei;Zuo, Heng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.613-620
    • /
    • 2020
  • The research study is focuses on a form of all-bolted joint with the external ring stiffening plate in the prefabricated steel structure. The components are bolted at site after being fabricated in the factory. Six specimens were tested under cyclic loading, and the effects of column axial compression ratio, concrete-filled column, beam flange sub plate, beam web angle cleats, and spliced column on the failure mode, hysteretic behavior and ductility of the joints were analyzed. The results shown that the proposed all-bolted joint with external ring stiffening plate performed high bearing capability, stable inflexibility degradation, high ductility and plump hysteretic curve. The primary failure modes were bucking at beam end, cracking at the variable section of the external ring stiffening plate, and finally welds fracturing between external ring stiffening plate and column wall. The bearing capability of the joints reduced with the axial compression ratio increased. The use of concrete-filled steel tube column can increase the bearing capability of joints. The existence of the beam flange sub plate, and beam web angle cleat improves the energy dissipation, ductility, bearing capacity and original rigidity of the joint, but also increase the stress concentration at the variable section of the external reinforcing ring plate. The proposed joints with spliced column also performed desirable integrity, large bearing capacity, initial stiffness and energy dissipation capacity for engineering application by reasonable design.

Experimental Study on Circular Flange Joints in Tubular Structures (원형강관 플랜지 이음에 관한 실험적 연구)

  • Shin, Chang-Hoon;Han, Duck-Jen
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.119-127
    • /
    • 2002
  • This paper presents a study of the behaviour of bolted circular flange joints in tubular structures. In the tests on nine circular flange joints, different tension forces was applied to the joints and bolt strains, displacements and strains in the joints have been measured. Bolt strain, contact force(prying force) between flanges and stress distribution in a joint have been studied. Different methods used for the design of circular flange joints are described.

A Study on the Contact Characteristics of Metal Ring Joint Gaskets

  • Lee, Min-Young;Kim, Byung-Tak
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.25-31
    • /
    • 2016
  • Gaskets are usually used for the sealing of flange joints. The joint is usually composed of two flanges, a ring gasket and clamping bolts. The metal ring gasket is suitable for pipe flanges, pumps and valve joints in high temperature and high pressure environments. A very high surface stress is developed between a ring type joint gasket and the flange groove when the ring type joint is bolted up in a flange. The dimensions of flanges and ring joint gaskets for the pipe sizes that are in common use are specified in the ANSI codes. However, sometimes it is necessary to make a new design for the flange joint which is not specified in the codes, as the equipment is getting larger and larger in size. This paper presents the contact behavior of Class 600 ring joint gaskets with oval and octagonal cross sections. Five different sizes of gaskets are employed in the analysis, and one of them is newly designed on the basis of analysis results obtained from existing models. Three load steps are used to find the stress, stain and contact pressure etc., and to compare the contact characteristics among the models due to the bolt clamping force and the working surface pressure. ANSYS Workbench version15 is used to conduct the finite element analysis.

Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method

  • Girao Coelho, Ana M.;Simoes da Silva, Luis;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.33-53
    • /
    • 2006
  • The rotational behaviour of bolted extended end plate beam-to-column connections is evaluated in the context of the component method. The full moment-rotation response is characterized from the force-deformation curve of the individual joint components. The deformability of end plate connections is mostly governed by the bending of the column flange and/or end plate and tension elongation of the bolts. These components form the tension zone of the joint that can be modelled by means of "equivalent T-stubs". A systematic analytical procedure for characterization of the monotonic force-deformation behaviour of individual T-stub connections is proposed. In the framework of the component method, the T-stub is then inserted in the joint spring model to generate the moment-rotation response of the joint. The procedures are validated with the results from an experimental investigation of eight statically loaded extended end plate bolted moment connections carried out at the Delft University of Technology. Because ductility is such an important property in terms of joint performance, particularly in the partial strength joint scenario, special attention is given to this issue.

A Study on Finite Element Modeling of the Structure with Bolted Joints (볼트 체결부를 갖는 구조물의 유한요소모델링에 관한 연구)

  • Yoon, Ju-Chul;Kang, Bum-Soo;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.205-212
    • /
    • 2003
  • In this study, in order to investigate a modeling technique of the structure with bolted joints, four kinds of finite element model are introduced; a solid bolt model, a coupled bolt model, a spider bolt model, and no bolt model. All proposed models take account on prestrained effect and contact behavior of flanges to be joined. Among these models, a solid bolt model, which is modeled by using a 3-D solid element and a surface-to-surface contact element between the head/nut and the flange interfaces, has the best accurate responses compared with the experimental results. In addition, coupled bolt model, which couples the degree of freedom between the head/nut and the flange, shows the best effectiveness and usefulness in view of computational time and memory usage. Finally, the bolt model proposed here is adopted for structural analysis of a large diesel engine of a ship consisting of several parts which is connected by long stay bolts.